精英家教网 > 初中数学 > 题目详情

【题目】如果三角形有一边上的中线长恰好等于这条边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知中,,一条直角边为3,如果是“有趣三角形”,那么这个三角形“有趣中线”的长等于________

【答案】3.

【解析】

有趣中线分别三种情况,两个直角边跟斜边,而直角三角形的斜边的中点到三顶点距离相等,不符合;两个直角边,有一种情况有趣中线为3.或另一条直角边为3,利用勾股定理求出即可.

有趣中线有三种情况:

有趣中线为斜边AB上的中线,直角三角形的斜边的中线等于斜边的一半,不合题意;

有趣中线”BD=AC=3

有趣中线为BD,如图所示,

BC=3

BD=2x,则CD=x

RtCBD中,根据勾股定理得:BD2=BC2+CD2,即(2x2=32+x2

解得:x=

ABC有趣中线的长等于或3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD平行BC,ABC=90°,AD=2,AB=6,以AB为直径的半O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半O的切线,MN交BC于M,交CD于N,则MCN的周长为(

A.9 B.10 C.3 D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在横线上完成下面的证明,并在括号内注明理由.

已知:如图,∠ABC+BGD180°,∠1=∠2

求证:EFDB

证明:∵∠ABC+BGD180°,(已知)

   .(   

∴∠1=∠3.(   

又∵∠1=∠2,(已知)

   .(   

EFDB.(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若连续抛掷一枚质地均匀的骰子两次得到的点数分别为,则最大值是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顺次连接四边形ABCD四边中点得到新的四边形为菱形,那么原四边形ABCD为( )

A. 矩形

B. 菱形

C. 对角线相等的四边形

D. 对角线垂直的四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.

(1)连接AF,CE,求证:四边形AFCE为菱形;

(2)求菱形AFCE的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=30°OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点MN分别为OAOB边上动点,则MNP周长的最小值为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC沿BC方向平移2cm得到DEF,若ABC的周长为16cm,則四辺形ABFD的周长为( )

A. 16cmB. 18cmC. 20cmD. 22cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面上,RtABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆OBC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°α180°)

(1)当α=0°时,连接DE,则∠CDE=   °,CD=   

(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;

(3)若m=10,n=8,当α=ACB时,求线段BD的长;

(4)若m=6,n=4,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.

查看答案和解析>>

同步练习册答案