【题目】如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若,则称P为⊙T的环绕点.
(1)当⊙O半径为1时,
①在中,⊙O的环绕点是___________;
②直线y=2x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;
(2)⊙T的半径为1,圆心为(0,t),以为圆心,为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.
【答案】(1)①.②b的取值范围为或.(2)
【解析】
(1)①根据环绕点的定义及作图找到即可判断;
②当点B在y轴正半轴上时,根据环绕点的定义考虑以下两种特殊情况:线段AB与半径为2的⊙O相切时,与当点B经过半径为1的⊙O时,分别求出此时的OB的长,即可得到可得b的取值范围,再由点B在y轴负半轴上时同理可得b的取值;
(3)根据题意作出图形,求出OS与x轴正半轴的夹角为30°,得∠BOC=60°,图形H为射线OB与射线OC围成的一个扇形区域(不包括点O,半径可无穷大),分当t≥0与t<0时,根据环绕点的定义进行求解.
(1)①如图,
∵P1在圆上,故不是环绕点,
P2引圆两条切线的夹角为90°,满足,故为⊙O的环绕点
P3(0,2),∵P3O=2OM,∠P3MO=90°,∴∠MOP3=30°,
同理:∠NOP3=30°,∴,故为⊙O的环绕点
故填:;
②半径为1的⊙O的所有环绕点在以O为圆心,半径分别为1和2的两个圆之间(如下图阴影部分所示,含大圆,不含小圆).
ⅰ)当点B在y轴正半轴上时,如图1,图2所示.
考虑以下两种特殊情况:线段AB与半径为2的⊙O相切时,;
当点B经过半径为1的⊙O时,OB=1.
因为线段AB上存在⊙O的环绕点,所以可得b的取值范围为 ;
②当点B在y轴负半轴上时,如图3,图4所示.
同理可得b的取值范围为 .
综上,b的取值范围为或.
(3)点记为S,设OS与x轴正半轴的夹角为a
∵tana=
∴a=30°,
如图,圆S与x轴相切,过O点作⊙S的切线OC,
∵OC、OB都是⊙S的切线
∴∠BOC=2∠SOB=60°,
当m取遍所有整数时 ,就形成图形H,
图形H为射线OB与射线OC围成的一个扇形区域(不包括点O,半径可无穷大)
当t≥0时,过T作OC的垂线,垂足为M,当TM>2时,图形H不存在环绕点,OT=2TM,故t≤4,
当t<0时,图形H上的点到T的距离都大于OT,当OT≥2时,图形H不存在⊙T环绕点,因此t>-2,
综上:.
科目:初中数学 来源: 题型:
【题目】为了加快“智慧校园”建设,某市准备为试点学校采购一批、两种型号的一体机,经过市场调查发现,今年每套型一体机的价格比每套型一体机的价格多0.6万元,且用960万元恰好能购买500套型一体机和200套型一体机.
(1)求今年每套型、型一体机的价格各是多少万元
(2)该市明年计划采购型、型一体机1100套,考虑物价因素,预计明年每套型一体机的价格比今年上涨25%,每套型一体机的价格不变,若购买型一体机的总费用不低于购买型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年非洲猪瘟疫情暴发后,今年猪肉价格不断走高,引起了民众与政府的高度关注,据统计:今年7月20日猪肉价格比今年年初上涨了60%,某市民今年7月20日在某超市购买1千克猪肉花了80元钱.
(1)问:今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克65元的猪肉,按7月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪内每天有1560元的利润,并且可能让顾客得到实惠,猪肉的售价应该下降多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E、F是⊙O上的两点,连结AE、CF、DF,满足EA=CA.
(1)求证:AE是⊙O的切线;
(2)若⊙O的半径是3,tan∠CFD=,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学所在年级的500名学生参加志愿者活动,现有以下5个志愿服务项目:A,纪念馆志讲解员.B.书香社区图书整理C.学编中国结及义卖.D,家风讲解员E.校内志愿服务,要求:每位学生都从中选择一个项目参加,为了了解同学们选择这个5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:
收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示)
B,E,B,A,E,C,C,C,B,B,
A,C,E,D,B,A,B,E,C,A,
D,D,B,B,C,C,A,E,B
C,B,D,C,A,C,C,A,C,E,
(1)整理、描述诗句:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图
选择各志愿服务项目的人数统计表
志愿服务项目 | 划记 | 人数 |
A.纪念馆志愿讲解员 | 正 | 8 |
B.书香社区图书整理 | ||
C.学编中国结及义卖 | 正正 | 12 |
D.家风讲解员 | ||
E.校内志愿服务 | 正 一 | 6 |
合计 | 40 | 40 |
分析数据、推断结论
(2)抽样的40个样本数据(志愿服务项目的编号)的众数是 (填A﹣E的字母代号)
(3)请你任选A﹣E中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】宣和中学图书馆今日购进甲、乙两种图书,每本甲种图书的进价比每本乙种图书的进价高20元,花780元购进甲种图书的数量与花540元购进乙种图书的数量相同.
(1)求甲、乙两种图书每本的进价分别是多少元;
(2)宣和中学购进甲、乙两种图书共70本,总购书费用不超过3950元,则最多购进甲种图书多少本.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,∠C=90°,O是斜边AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与BC交于点F,与AC相切于点D,连接DF、BD,且BD平分∠ODF.
(1)求证:四边形是菱形;
(2)若,求阴影部分的面积(结果保留).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.
(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com