精英家教网 > 初中数学 > 题目详情

如图,△ABC与△A′B′C′是位似图形,PB′=BB′,则△A′B′C′与△ABC的周长之比为


  1. A.
    1:2
  2. B.
    1:4
  3. C.
    1:3
  4. D.
    1:9
A
分析:由△ABC与△A′B′C′是位似图形,PB′=BB′,可求得△A′B′C′与△ABC的位似比,又由相似三角形的周长的比等于相似比,即可求得答案.
解答:∵△ABC与△A′B′C′是位似图形,PB′=BB′,
∴A′B′:AB=PB′:PB=1:2,
∴△A′B′C′与△ABC的周长之比为:1:2.
故选A.
点评:此题考查了位似图形的性质.注意相似三角形的周长的比等于相似比,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC与△ADC关于直线AC对称,连接BD,若已知四边形ABCD的面积是125,AC=25,则BD的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC与△ADE是两个大小不同的等腰直角三角形,B、C、E在同一条直线上,连接CD.
(1)证明:△ABE≌△ACD;
(2)CD与BE是否垂直?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为(  )
A、
3
:1
B、
2
:1
C、5:3
D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC与△ABD都是等边三角形,点E,F分别在BC,AC上,BE=CF,AE与BF交于点G.
(1)求∠AGB的度数;
(2)连接DG,求证:DG=AG+BG.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图,△ABC与△A′B′C′关于直线MN对称,△A′B′C′与△A″B″C″关于直线EF对称.
(1)画出△ABC和直线EF;
(2)若直线MN和EF相交于点O,直线MN、EF所夹的锐角设为α,猜想∠BOB″与α之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案