精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,AB=CBAD=CD,对角线ACBD相交于点OOEABOFCB,垂足分别是EF.求证:OE=OF

【答案】见解析

【解析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.

证明:在△ABD和△CBD中,

AB=CB,AD=CD,BD=BD,

∴△ABD≌△CBD(SSS),

∴∠ABD=∠CBD,

∴BD平分∠ABC.

又∵OE⊥AB,OF⊥CB,

∴OE=OF.

“点睛”本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形。

2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?

3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 是半圆,连接AB,点O为AB的中点,点C,D在 上,连接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,则∠ABD的大小是(

A.26°
B.28°
C.30°
D.32°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形中,上一动点,点的延长线上,平分,交于点.

(1)如图①,连接,求证:

(2)如图②,当时,求证:

(3)如图③,当时,若平分,求证: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个三角形的两条边长分别是1cm2cm,一个内角为40度.

(1)请你借助图1画出一个满足题设条件的三角形;

(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由;

(3)如果将题设条件改为“三角形的两条边长分别是3cm4cm,一个内角为40°”,那么满足这一条件,且彼此不全等的三角形共有几个.

友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AC=BCACB=90°,点DEAB上,将ACDBCE分别沿CDCE翻折,点AB分别落在点A′B′的位置,再将A′CDB′CE分别沿A′CB′C翻折,点D与点E恰好重合于点O,则∠A′OB′的度数是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为

(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF= ∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?

(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB的垂直平分线分别交AB、BC于点M、P,AC的垂直平分线分别交AC、BC于点N、Q,∠BAC=110°,则∠PAQ=_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠A=60°,∠B=58°.甲、乙两人想在△ABC外部取一点D,使得△ABC与△DCB全等,其作法如下:
(甲)①作∠A的角平分线L.
②以B为圆心,BC长为半径画弧,交L于D点,则D即为所求.
(乙)①过B作平行AC的直线L.
②过C作平行AB的直线M,交L于D点,则D即为所求.
对于甲、乙两人的作法,下列判断何者正确?(  )

A.两人皆正确
B.两人皆错误
C.甲正确,乙错误
D.甲错误,乙正确

查看答案和解析>>

同步练习册答案