【题目】如图①,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图①的图形称之为“8字形”.
(1)如图①,若∠A=∠D,判断∠C与∠B的数量关系,并说明理由;
(2)如图②,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N,试解答下列问题:
①仔细观察,在图②中有 个“8字形”;
②∠B=80°,∠C=100°,求∠P的度数.
【答案】(1)∠C=∠B(2)①6②90
【解析】
(1)利用三角形的内角和定理表示出∠AOD与∠BOC,再根据对顶角相等可得∠AOD=∠BOC,然后整理即可得解;
(2)①根据“8字形”的结构特点,根据交点写出“8字形”的三角形,然后确定即可;
②根据三角形的内角和定理求出∠ODB∠OAC,再根据角平分线的定义求出∠CAM+∠C∠PDM,然后利用“8字形”的关系式列式整理即可得解;
解:(1)在△AOC中,∠AOC=180°∠A∠C,
在△BOD中,∠BOD=180°∠B∠D,
∵∠AOC=∠BOD(对顶角相等),
∴180°∠A∠C=180°∠B∠D,
∴∠A+∠D=∠B+∠C;
∵∠A=∠D,
∴∠C=∠B.
故答案为:∠C=∠B.
(2)①交点有点M、O、N,
以M为交点有1个,为△AMC与△DMP,
以O为交点有4个,为△AOC与△DOB,△AOM与△DON,△AOM与△DOB,△DON与△AOC,
以N为交点有1个,为△ANP与△DNB,
所以,“8字形”图形共有6个;
∵∠C=100°,∠B=80°,
∴∠OAC+100°=∠ODB+80°,
∴∠ODB∠OAC=20°,
∵AP、DP分别是∠CAB和∠BDC的角平分线,
∴∠CAM=∠OAC,∠PDM=
∠ODB,
又∵∠CAM+∠C=∠PDM+∠P,
∴∠P=∠CAM+∠C∠PDM=(∠OAC∠ODB)+∠C=
×(20°)+100°=90°;
科目:初中数学 来源: 题型:
【题目】某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动.为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,已知随机抽查的教师人数为学生人数的一半,将收集的数据绘制成下列不完整的两种统计图.
(1)本次共调查了多少名学生?
(2)求学生步行所在扇形的圆心角度数.
(3)求教师乘私家车出行的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=DC,AD=BC,E,F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )
A. 150° B. 40° C. 80° D. 90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠ABC=90°,AB=4cm,BC=8cm,E、F是AD,DC的中点,连接EF、BE、BF,已知四边形ABCD的面积为36,△DEF的面积是△DAC面积的
,求△BEF的面积_____
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=-3x+3与x轴,y轴分别交于A,B,两点,以AB为边在第一象限内作正方形ABCD,点D在反比例函数y= (k≠0)的图象上.
(1)求k的值;
(2)若将正方形沿x轴负方向平移m个单位长度后,点C恰好落在该反比例函数的图象上,则m的值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知∠1+∠2=180°,∠3=∠B,
求证:∠AED=∠ACB.
证明:∠1+∠2=180°(已知),∠1+∠4=180°( ),
∴∠2= ( ),
∴AB∥EF( ),
∴∠3= ( ),
∵∠3=∠B(已知),
∴∠B= (等量代换),
∴DE∥BC( ),
∴∠AED=∠ACB( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( ).
A.1
B.2
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积( )
A.12
B.24
C.8
D.6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com