精英家教网 > 初中数学 > 题目详情

如图,菱形ABCD中,AB=10,数学公式,点E在AB上,AE=4,过点E作EF∥AD,交CD于F,点P从点A出发以1个单位/s的速度沿着线段AB向终点B运动,同时点Q从点E出发也以1个单位/s的速度沿着线段EF向终点F运动,设运动时间为t(s).
(1)填空:当t=5时,PQ=______;
(2)当BQ平分∠ABC时,直线PQ将菱形的周长分成两部分,求这两部分的比;
(3)以P为圆心,PQ长为半径的⊙P是否能与直线AD相切?如果能,求此时t的值;如果不能,说明理由.
作业宝

解:(1)根据题意画出图形,如图所示:

过点P作PM⊥EF,垂足为M,
由题意可知AE=4,AP=EQ=5,则EP=1,
∵EF∥AD,
∴∠BEF=∠A,即sin∠BEF=sinA=
=,则PM=
根据勾股定理得:EM=
则MQ=5-=
在直角三角形PQM中,根据勾股定理得:
PQ==2

(2)根据题意画出图形,如图所示:

∵BQ平分∠ABC,
∴∠EBQ=∠CBQ,
又∵BC∥EF,
∴∠CBQ=∠EQB,
∴∠EBQ=∠EQB,
∴EB=EQ=10-4=6,
则t=6,AP=6,
∴BP=4,QF=4,
设PQ交CD于点M,
∵AB∥CD,
∴∠EPQ=∠FMQ,∠PEQ=∠MFQ,
∴△EPQ∽△FMQ,
=,即=
∴FM=
则MD=4-=,MC=
则直线PM分菱形分成的两部分的周长分别为AP+AD+MD和PB+BC+CM,
即菱形的周长被分为
所以这两部分的比为7:8;

(3)过P作PH⊥AD于H,交EF于G点,
则PH=,PE=t-4,PG=(t-4),EG=(t-4),
∴GQ=t-EG=t+
PQ2=PG2+GQ2=(t-2+(t+2
由题意可得方程=(t-2+(t+2
解得:t=10.
分析:(1)过点P作PM⊥EF,垂足为M,利用锐角三角函数求得PM的长,然后利用勾股定理求得EM的长,再利用勾股定理求得PQ的长即可;
(2)根据题意画出图象,结合图形和已知条件证得△EPQ∽△FMQ,进而求得MC的长,然后求得菱形的周长被分成两部分,并据此求得两部分的比值;
(3)过P作PH⊥AD于H,并利用勾股定理PQ2=后求得t的值即可.
点评:本题考查了菱形的性质、切线的判定及性质及解直角三角形的知识,解题的关键是正确地作出图形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD中,∠A=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿B→C→D向终点D运动.同时动点Q从点A出发,以相同的速度沿A→D→B向终点B运动,运动的时间为x秒,当点P到达点D时,点P、Q同时停止运动,设△APQ的面积为y,则反映y与x的函数关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长为2
3
,则PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:菱形ABCD中,E是AB的中点,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度数;
(2)对角线BD的长;
(3)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的长.
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案