精英家教网 > 初中数学 > 题目详情
如图一,在△ABC中,分别以AB,AC为直径在△ABC外作半圆O1和半圆O2,其中O1和O2分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.
(1)连接O1F,O1D,DF,O2F,O2E,EF,证明:△DO1F≌△FO2E;
(2)如图二,过点A分别作半圆O1和半圆O2的切线,交BD的延长线和CE的延长线于点P和点Q,连接PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;
(3)如图三,过点A作半圆O2的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连接PA.证明:PA是半圆O1的切线.
(1)证明:如图一,

∵O1,O2,F分别是AB,AC,BC边的中点,
∴O1FAC且O1F=AO2,O2FAB且O2F=AO1
∴∠BO1F=∠BAC,∠CO2F=∠BAC,
∴∠BO1F=∠CO2F
∵点D和点E分别为两个半圆圆弧的中点,
∴O1F=AO2=O2E,O2F=AO1=O1D,
∠BO1D=90°,∠CO2E=90°,
∴∠BO1D=∠CO2E.
∴∠DO1F=∠FO2E.
∴△DO1F≌△FO2E;

(2)如图二,延长CA至G,使AG=AQ,连接BG、AE.

∵点E是半圆O2圆弧的中点,
∴AE=CE=3
∵AC为直径
∴∠AEC=90°,
∴∠ACE=∠EAC=45°,AC=
AE2+CE2
=3
2

∵AQ是半圆O2的切线,
∴CA⊥AQ,
∴∠CAQ=90°,
∴∠ACE=∠AQE=45°,∠GAQ=90°,
∴AQ=AC=AG=3
2

同理:∠BAP=90°,AB=AP=5
2

∴CG=6
2
,∠GAB=∠QAP,
∴△AQP≌△AGB.
∴PQ=BG,
∵∠ACB=90°,
∴BC=
AB2-AC2
=4
2

∴BG=
GC2+BC2
=2
26

∴PQ=2
26


(3)如图三,设直线FA与PQ的垂足为M,过C作CS⊥MF于S,过B作BR⊥MF于R,连接DR、AD、DM.

∵F是BC边的中点,∴S△ABF=S△ACF
∴BR=CS,
由(2)已证∠CAQ=90°,AC=AQ,
∴∠2+∠3=90°
∵FM⊥PQ,∴∠2+∠1=90°,
∴∠1=∠3,
同理:∠2=∠4,
∴△AMQ≌△CSA,
∴AM=CS,
∴AM=BR,
同(2)可证AD=BD,∠ADB=∠ADP=90°,
∴∠ADB=∠ARB=90°,∠ADP=∠AMP=90°
∴A、D、B、R四点在以AB为直径的圆上,A、D、P、M四点在以AP为直径的圆上,
且∠DBR+∠DAR=180°,
∴∠5=∠8,∠6=∠7,
∵∠DAM+∠DAR=180°,
∴∠DBR=∠DAM
∴△DBR≌△DAM,
∴∠5=∠9,
∴∠RDM=90°,
∴∠5+∠7=90°,
∴∠6+∠8=90°,
∴∠PAB=90°,
∴PA⊥AB,又AB是半圆O1直径,
∴PA是半圆O1的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,从⊙O外一点P引圆的切线PA和PB,切点分别是A和B,如果∠APB=70°,那么这两条切线所夹劣弧AB的度数是(  )
A.110°B.70°C.55°D.35°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,半径OC⊥AB,D为AB延长线上一点,过D作⊙O的切线,E为切点,连接CE交AB于点F.
(1)求证:DE=DF;
(2)连AE,若OF=1,BF=3,求DE长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,一个圆球放置在V型架中.图2是它的平面示意图,CA、CB都是⊙O的切线,切点分别是A、B,如果⊙O的半径为2
3
cm,且AB=6cm,求∠ACB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=8,OA=6,则tan∠APO的值为(  )
A.
3
4
B.
3
5
C.
4
5
D.
4
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是劣弧BC的中点,过点P作⊙O的切线交AB延长线于点D.
(1)求证:DPBC;
(2)求DP的长.

查看答案和解析>>

同步练习册答案