精英家教网 > 初中数学 > 题目详情

【题目】平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(a ,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k关联点”.

(1)求点P(﹣2,3)的“2关联点”P′的坐标;
(2)若a、b为正整数,点P的“k关联点”P′的坐标为(3,6),求出k及点P的坐标;
(3)如图,点Q的坐标为(0,4 ),点A在函数y=﹣ (x<0)的图象上运动,且点A是点B的“﹣ 关联点”,当线段BQ最短时,求B点坐标.

【答案】
(1)解:∵x=﹣2+ =﹣ ,y=2×(﹣2)+3=﹣1,

∴P′(﹣ ,﹣1);


(2)解:设P(a,b),则P′(a ,ka+b)

∴k=2,

∴2a+b=6.

∵a、b为正整数

∴P′(1,4)、(2,2);


(3)解:∵B的“﹣ 关联点”是A,

∴A(a﹣ ,﹣ a+b),

∵点A还在反比例函数y=﹣ 的图象上,

∴(﹣ a+b)(a﹣ )=﹣4

∴(b﹣ a)2=12,

∵b﹣ a>0,

∴b﹣ a=2

∴b= a+2

∴B在直线y= x+2 上.

过Q作y= x+2 的垂线QB1,垂足为B1

∵Q(0,4 ),且线段BQ最短,

∴B1即为所求的B点,

由△MB1Q∽△MON 得

∵ON=2,OM=2

∴MN=4.

又∵MQ=2

∴B1Q= ,MB1=3

在Rt△MB1Q中,B1QMB1=MQhB1

∴hB1=

∴xB1=

∴B( ).


【解析】(1)根据新定义求出P′的坐标。
(2)根据新定义,建立方程组,就可以求出k及点P的坐标。
(3)根据题意表示出点A的坐标,再代入反比例函数求得b的值,从而求得点B在一次函数图像上,过Q作y= x+2 的垂线QB1,垂足为B1, 则线段BQ最短,B1即为所求的B点,然后由△MB1Q∽△MON 得对应边成比例,求出MN、B1Q、MB1的长,再利用三角形的面积公式即可求出点B的坐标。
【考点精析】关于本题考查的反比例函数的图象和垂线段最短,需要了解反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点;连接直线外一点与直线上各点的所有线段中,垂线段最短;现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC
(2)若AB=4,AD=3 ,AE=3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016双十一期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.

(1)求甲、乙两种车辆单独完成任务分别需要多少天?

(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1OM是∠AOB的平分线,点COM上,OC5,且点COA的距离为3.过点CCDOACEOB,垂足分别为DE,易得到结论:OD+OE等于多少;

1)把图1中的∠DCE绕点C旋转,当CDOA不垂直时(如图2),上述结论是否成立?并说明理由;

2)把图1中的∠DCE绕点C旋转,当CDOA的反向延长线相交于点D时:

①请在图3中画出图形;

②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段ODOE之间的数量关系,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.

(1)求证:DM=DA;
(2)如图②,点G在BE上,且∠BDG=∠C.求证:△DEG∽△ECF;
(3)在(2)的条件下,已知EF=2,CE=3,求GE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=a(x﹣h)2+k(a,h,k为常数)在坐标平面上的图象通过(0,5)、(15,8)两点.若a<0,0<h<10,则h之值可能为下列何值?( )

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,上一点,连接,点上,连接BEC=DEB,若BE=3AB=4,则线段AE的长为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),

(1)当线段AB所在的直线与圆O相切时,求弧AQ的长(图1);
(2)若∠AOB=120°,求AB的长(图2);

(3)如果线段AB与圆O有两个公共点A、M,当AO⊥PM于点N时,求tan∠MPQ的值(图3).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2= (x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则 =

查看答案和解析>>

同步练习册答案