分析 根据垂径定理和勾股定理求得正要想使正方体的体积最大,那么图2的中间4个正方形组成的矩形的四个顶点就应该都在圆上,设正方形的边长为x,根据勾股定理求出x即可.
解答 解:根据勾股定理求得正要想使正方体的体积最大,那么图2的中间4个正方形组成的矩形的四个顶点就应该都在圆上,设正方形的边长为x,
连接AC,则AC是直径,
AC=17,
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2,
172=x2+(4x)2,
x=$\sqrt{17}$,
因此正方体的体积就是$\sqrt{17}$×$\sqrt{17}$×$\sqrt{17}$=17$\sqrt{17}$cm3.
点评 本题主要考查了正方形的性质及垂径定理等知识点,本题中根据垂径定理求出小正方形的边长是解题的关键.
科目:初中数学 来源: 题型:解答题
星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
+18 | -6 | +15 | 0 | -12 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com