精英家教网 > 初中数学 > 题目详情
11.将一直径为17cm的圆形纸片(如图1)剪成如图2所示形状的纸片,再将纸片沿虚线折叠得到正方体(如图3)形状的纸盒,则这样的纸盒的最大体积.

分析 根据垂径定理和勾股定理求得正要想使正方体的体积最大,那么图2的中间4个正方形组成的矩形的四个顶点就应该都在圆上,设正方形的边长为x,根据勾股定理求出x即可.

解答 解:根据勾股定理求得正要想使正方体的体积最大,那么图2的中间4个正方形组成的矩形的四个顶点就应该都在圆上,设正方形的边长为x,
连接AC,则AC是直径,
AC=17,
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2
172=x2+(4x)2
x=$\sqrt{17}$,
因此正方体的体积就是$\sqrt{17}$×$\sqrt{17}$×$\sqrt{17}$=17$\sqrt{17}$cm3

点评 本题主要考查了正方形的性质及垂径定理等知识点,本题中根据垂径定理求出小正方形的边长是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.高新一中新图书馆在“校园书香四溢”活动中迎来了借书高潮,上周借书记录如表:(超过100册的部分记为正,少于100册的部分记为负)
星期一星期二星期三星期四星期五
+18-6+150-12
(1)上星期借书最多的一天比借书最少的一天多借出图书多少册?
(2)上星期平均每天借出多少册书?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知A=[(a+2)2-(a-2)2]-3a(a+$\frac{17}{3}$)
(1)化简A;
(2)已知a2+3a+7=8,求A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1,AB是⊙O的直径,直线EF与⊙O相切于点C,连接AC,过点A作AD⊥EF于点D
(1)求证:∠CAD=∠BAC
(2)如图2,将(1)中的条件“直线EF与⊙O相切于点C,连接AC”改成“直线EF与⊙O相交于点G,H,连接AG、AH”,其余条件不变,求证:∠GAD=∠BAH
(3)在图2中,若AH平分∠BAG,AB=2$\sqrt{5}$,cos∠BAH=$\frac{2\sqrt{5}}{5}$,直接写出线段DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB,并证明.
作法:①以O为圆心,任意长为半径画弧分别交OA、OB于点M、N
②画一条射线O′A′,以O′为圆心,OM长为半径画弧交O′A′于点M′
③以点M′为圆心,MN长为半径画弧与第②步中所画弧交于点N′
④过点N′画射线O′B′,则∠A′O′B′=∠AOB
证明:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在平面直角坐标系中,抛物线y=-mx2+4mx+3(m>0)的图象与x轴的一个交点为(-1,0).点A在y轴正半轴上,点B在x轴正半轴上,始终有OA=3OB.连接AB,将线段AB绕点B按顺时针旋方向旋转90°得到线段BC,过点C作直线l⊥x轴于H,过点A作AD⊥l于D.

(1)若直线l刚好是抛物线的对称轴时,求OB的长;
(2)若四边形ABCD的面积等于9时,求点D的坐标,并判断点D是否落在抛物线上;
(3)在(2)的条件下,点P是直线l上的一个动点.
①试探究在抛物线上,是否存在点Q,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,请求出点Q的坐标;若不存在,请说明理由;
②当∠PBC<45°时,求点P的纵坐标n的取值范围.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.把图1的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图2)已知∠MPN=90°,PM=3,PN=4.

(1)MN=5;(2)矩形纸片ABCD的面积为28.8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读下面的文字,解答问题.
大家知道$\sqrt{2}$是无理数,而无理数是无限不循环小数.因此,$\sqrt{2}$的小数部分不可能全部地写出来,但可以用$\sqrt{2}$-1来表示$\sqrt{2}$的小数部分.理由:因为$\sqrt{2}$的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:
已知:2+$\sqrt{6}$的小数部分为a,5-$\sqrt{6}$的小数部分为b,计算a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.利用分配律可以得-2×6+3×6=(-2+3)×6=-6.如果a表示任意一个有理数,那么利用分配律可以得到-2a+3a=(-2+3)a=a.

查看答案和解析>>

同步练习册答案