精英家教网 > 初中数学 > 题目详情
如图所示,在平面直角坐标系中,矩形ABCO的两边OA、OC分别在x轴和y轴的正半轴上,OA=4,OC=2。点P从点O出发,沿x轴以每秒1个单位长度的速度向点A匀速运动,当点P到达点A时停止运动。设点P运动的时间是t秒,将线段CP的中点绕点P按顺时针方向旋转90°得到点D,点D随点P的运动而运动,连结DP,DA。
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大?最大面积为多少?
(3)当点P与点O重合时,CO的中点绕点P旋转后的对应点为D1,点P与点A重合时,CA中点绕P点旋转后的对应点为D2,求直线D1D2的解析式;
(4)求出随着点P的运动,点D运动路线的长度。
解:(1)过点D作DE⊥x轴于点E,
则∠DPE=∠COP=90°,
因为∠CPD=90°,
∴∠DPE=90°-∠CPO,
又∵∠OPC=90°-∠CPO,
∴∠DPE=∠OPC,
∴△PED∽△COP,

∴PE==1,DE=OE=OP+PE=t+1,
∴D点的坐标为
(2)PA=4-t,DE==t,所以S△DPA==
∴当t=2时,S△DPA最大,且最大值为1;
(3)D1(1,0),D2(5,2),设直线D1D2的解析式为y=kx+b,所以,解得
∴直线D1D2的解析式为y=
(4)将D点坐标代入到解析式中,y=
∴点D在直线D1D2上,即D点运动的路线是一条线段,起点是D1(1,0),终点是D2(5,2),
D1D2=,∴点D运动路线的长度为
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=
9x
的图象在第一象限相精英家教网交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,在平面直角坐标系中,点A、B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A,B,C作循环对称跳动,即第一次从点P跳到关于点A的对称点M处,第二次从点M跳到关于点B的对称点N处,第三次从点N跳到关于点C的对称点处,…如此下去.
(1)在图中标出点M,N的位置,并分别写出点M,N的坐标:
 

(2)请你依次连接M、N和第三次跳后的点,组成一个封闭的图形,并计算这个图形的面积;
(3)猜想一下,经过第2009次跳动之后,棋子将落到什么位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在平面直角坐标系xoy中,有一组对角线长分别为1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其对角线OB1、B1B2、B2 B3依次放置在y轴上(相邻顶点重合),依上述排列方式,对角线长为n的第n个正方形的顶点An的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接精英家教网BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P',请直接写出P'点坐标,并判断点P'是否在该抛物线上.

查看答案和解析>>

同步练习册答案