精英家教网 > 初中数学 > 题目详情
18.在△ABC中,AB=AC=5,cos∠ABC=$\frac{3}{5}$,将△ABC绕点C顺时针旋转,得到△A1B1C,且点B1在线段BA延长线上(如图).
(1)求证:BB1∥CA1
(2)求△A1B1C的面积.

分析 (1)根据旋转的性质和等腰三角形的性质证出∠B1CA1=∠AB1C,即可得出结论;
(2)作AD⊥BC于D,由等腰三角形的性质和三角函数求出BD,DCBC,由勾股定理求出AD,求出△ABC的面积,再由旋转的性质即可得出△A1B1C的面积.

解答 (1)证明:∵AB=AC,B1C=BC,
∴∠AB1C=∠B,∠B=∠ACB,
∵∠AB1C=∠ACB(旋转角相等),
∴∠B1CA1=∠AB1C,
∴BB1∥CA1

(2)解:作AD⊥BC于D,如图所示:
∵AB=AC=5,AD⊥BC,
∴BD=CD,
∵cos∠ABC=$\frac{BD}{AB}$=$\frac{3}{5}$,
∴BD=3,
∴BC=2BD=6,
在Rt△ABD中,AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=4,
∴△ABC的面积=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×6×4=12;
由旋转的性质得:△A1B1C≌△ABC,
∴△A1B1C的面积=12.

点评 此题考查了旋转的性质、等腰三角形的性质、三角函数、勾股定理以及三角形面积的计算,求出BC和AD是解决问题(2)的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.计算:$\frac{3}{2}$$\sqrt{2}$+$\frac{1}{4}$$\sqrt{2}$-3$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,直线AB,CD相交于点O,若∠AOC+∠BOD=100°,则∠AOD等于130度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)计算:$\sqrt{12}$-6tan30°-($\sqrt{15}$-2)0+($\frac{1}{2}$)-2
(2)已知|a+2017|+(b-2015)2=0,求代数式$\frac{{a}^{2}+2ab+{b}^{2}}{2ab}$÷($\frac{1}{a}$+$\frac{1}{b}$)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.定义:点M,N把线段AB分割成AM、MN,NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
应用:(1)如图①,已知M、N是线段AB的勾股分割点,AM=6,MN=8,求NB的长;
(2)如图②,在△ABC中,点D、E在边线段BC上,且BD=3,DE=5,EC=4,直线l∥BC,分别交AB、AD、AE、AC于点F、M、N、G.求证:点M,N是线段FG的勾股分割点
拓展:(3)在菱形ABCD中,∠ABC=β(β<90°),点E、F分别在BC、CD上,AE、AF分别交BD于点M、N.
①如图③,若BE=$\frac{1}{2}$BC,DF=$\frac{1}{3}$CD,求证:M、N是线段BD的勾股分割点.
②如图④,若∠EAF=$\frac{1}{2}$∠BAD,sinβ=$\frac{12}{13}$,当点M、N是线段AB的勾股分割点时,求BM:MN:ND的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.关于x,y的二元一次方程组$\left\{\begin{array}{l}{x+y=1-m}\\{x-3y=5+3m}\end{array}\right.$中,m与方程组的解中的x或y相等,则m的值为(  )
A.3或$\frac{1}{3}$B.2或-$\frac{1}{3}$C.3或$\frac{1}{2}$D.2或-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.据官网统计,2014年我国微信平均“日登录用户”5亿,2016年达到5.7亿,如果设年平均增长率为x,那么x应满足的方程为(  )
A.5(x+1)=5.7B.5.7(x-1)=5C.5(x+1)2=5.7D.5+5x=5.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:
(1)1+$\frac{3x}{x-2}$=$\frac{6}{x-2}$;
(2)$\frac{1}{2x-1}$=$\frac{1}{2}$-$\frac{3}{4x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.(2b)3=8b${\;}^{{\;}^{3}}$.

查看答案和解析>>

同步练习册答案