精英家教网 > 初中数学 > 题目详情
如图,已知直线 l1∥l2,且 l3和l1、l2分别交于A、B 两点,l4和l1、l2分别交于D、C 两点,点P在直线AB上且点P和A、B不重合,PD和DM的夹角记为∠1,PC和CN的夹角记为∠2,PC和PD的夹角记为∠3.
(1)当∠1=25°,∠3=60°时,求∠2的度数;
(2)当点P在A、B两点之间运动时,∠1、∠2、∠3三个角之间的相等关系是
∠3=∠1+∠2
∠3=∠1+∠2

(3)如果点P在A、B两点外侧运动时,∠1、∠2、∠3三个角之间的相等关系是
当点P在l1上方时∠3=∠2-∠1,当点P在l2下方时∠3=∠1-∠2
当点P在l1上方时∠3=∠2-∠1,当点P在l2下方时∠3=∠1-∠2

(4)如果直线l3向左平移到l4左侧,其它条件不变,∠1、∠2、∠3三个角之间的相等关系是
当点P在A、B两点之间时∠1+∠2+∠3=360°,当点P在l1上方时∠3=∠1-∠2,当点P在l2下方时∠3=∠2-∠1.
当点P在A、B两点之间时∠1+∠2+∠3=360°,当点P在l1上方时∠3=∠1-∠2,当点P在l2下方时∠3=∠2-∠1.

(其中(2)、(3)、(4)均只要写出结论,不要求说明).
分析:(1)延长DP交直线l2于E,根据平行线得出∠1=∠DEC,根据三角形外角性质求出即可;
(2)延长DP交直线l2于E,根据平行线得出∠1=∠DEC,根据三角形外角性质求出即可;
(3)画出图形,延长DP交直线l2于E,根据平行线得出∠1=∠DEC,根据三角形外角性质求出即可;
(4)画出图形,延长DP交直线l2于E,根据平行线得出∠1=∠DEC,根据三角形外角性质求出即可.
解答:解:(1)延长DP交直线l2于E,
∵直线 l1∥l2,∠1=25°,
∴∠DEC=∠1=25°,
∵∠3=60°,
∠2=∠3-∠1=35°;
            
(2)∠3=∠1+∠2,
理由是:∵直线 l1∥l2
∴∠DEC=∠1,
∴∠3=∠2+∠DEC=∠1+∠2,
故答案为:∠3=∠2+∠1.
    
(3)故答案为:当点P在l1上方时∠3=∠2-∠1,
当点P在l2下方时∠3=∠1-∠2;

(4)故答案为:当点P在A、B两点之间时,∠1+∠2=∠3,当点P在l1上方时∠3=∠1-∠2,当点P在l2下方时∠3=∠2-∠1.
点评:本题考查了平行线性质的应用,主要考查学生的推理能力,用了运动观点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、如图,已知直线l1,l2,l3相交于点O,∠1=35°,∠2=25°,则∠3等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郯城县一模)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则cosα=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•黔南州)如图,已知直线l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知直线l1∥l2,且l3、l4和l1、l2分别交于点A、B和点C、D,点P在AB上,设∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之间的关系,并说明你的结论的正确性.
(2)若点P在A、B两点之间运动时(点P和A、B不重合),∠1、∠2、∠3 之间的关系
不会
不会
发生变化(填会或不会)
(3)如果点P在A、B两点外侧运动时,(点P和A、B不重合)
①当点P在射线AM上时,猜想∠1、∠2、∠3之间的关系为
∠2=∠3-∠1
∠2=∠3-∠1

②当点P在射线BN上时,猜想∠1、∠2、∠3之间的关系为
∠3=∠1-∠2
∠3=∠1-∠2
(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线l3上有点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.
(1)如果点P在C、D之间运动时,试说明∠PAC+∠PBD=∠APB;
(2)如果点P在直线l1的上方运动时,试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
(3)如果点P在直线l2的下方运动时,∠PAC,∠APB,∠PBD之间的关系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接写出结论)

查看答案和解析>>

同步练习册答案