【题目】已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是( )
A.y=x+2B.y=x+2C.y=4x+2D.y=x+2
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,菱形ABCD如图所示,,点D在线段AB的垂直平分线上,若菱形ABCD绕点O逆时针旋转,旋转速度为每秒,则第70秒时点D的对应坐标为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,A点的横坐标为3,则下列结论:①k=6;②A点与B点关于原点O中心对称;③关于x的不等式<0的解集为x<﹣3或0<x<3;④若双曲线y=(k>0)上有一点C的纵坐标为6,则△AOC的面积为8,其中正确结论的个数( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:h)的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.
课外劳动时间频数分布表
劳动时间分组 | 频数 | 频率 |
0≤t<20 | 2 | 0.1 |
20≤t<40 | 4 | m |
40≤t<60 | 6 | 0.3 |
60≤t<80 | a | 0.25 |
80≤t<100 | 3 | 0.15 |
解答下列问题:
(1)频数分布表中a= ,m= ;将频数分布直方图补充完整;
(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;
(3)已知课外劳动时间在60h≤t<80h的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).
请根据图中信息解答下列问题:
(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)
(2)求扇形统计图中表示“满意”的扇形的圆心角度数;
(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 6 | 2.9 | 2 | 1.5 | 1.2 | 1 |
(1)请画出相应函数的图象,并求出函数表达式.
(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从有400人的某小区抽取40名人员的答卷成绩,并对他们的成绩(单位:分)统计如下:
85 80 95 100 90 95 85 65 75 85
90 90 70 90 100 80 80 90 95 75
80 60 80 95 85 100 90 85 85 80
95 75 80 90 70 80 95 75 100 90
根据数据绘制了如下的表格和统计图:
根据上面提供的信息,回答下列问题:
(1)统计表中的a= ,b= ;c= ,d=
(2)请补全条形统计图;
(3)根据抽样调查结果,请估计该小区答题成绩为“C级”的有多少人?
(4)该社区有2名男管理员和2名女管理员,现从中随机挑选2名管理员参加“社区防控”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图①,在矩形中,,垂足是.点是点关于的对称点,连接.
(1)求和的长;
(2)若将沿着射线方向平移,设平移的距离为(平移距离指点沿方向所经过的线段长度).当点分别平移到线段上时,直接写出相应的的值.
(3)如图②,将绕点顺时针旋转一个角,记旋转中为,在旋转过程中,设所在的直线与直线交于点,与直线交于点.是否存在这样的两点,使为等腰三角形?若存在,求出此时的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com