①④⑤
分析:解答此题的关键是在于判断△DFE是否等腰直角三角形;做常规辅助线,连接CF,由SAS定理可得△CFE≌△ADF,从而可证∠DFE=90°可得DF=EF,可得①△DFE是等腰直角三角形正确;②,再由补割法可证④是正确的.判断③与⑤,①△DFE是等腰直角三角形;可得DE=
DF,当DF⊥BC时,DF最小,DE取最小值4
,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的,个,故①④⑤正确.
解答:解;连接CF.
∵△ABC为等腰直角三角形,
∴∠FCB=∠A=45°,CF=AF=FB,
∵AD=CE,
∴△ADF≌△CEF,
∴EF=DF,∠CFE=∠AFD,
∵∠AFD+∠CFD=90°
∴∠CFE+∠CFD=∠EFD=90°,
∴△EDF是等腰直角三角形,
∴①正确;
当D、E分别为AC,BC的中点时,四边形CDEF是正方形,
因此②错误;
∵△ADF≌△CEF,
∴S
△CEF=S
△ADF,
∴④是正确的;
∵△DEF是等腰直角三角形,
∴当DE最小时,DF也最小,
即当DF⊥AC时,DE最小,此时DF=
BC=4,
∴DE=
DF=4
,
∴③错误;
当△CDE面积最大时,由④知,此时△DEF的面积最小,此时,
S
△CDE=S
四边形CEFD-S
△DEF=S
△AFC-S
△DEF=16-8=8,
∴⑤正确.综上所述正确的有①④⑤.
故答案为:①④⑤.
点评:此题考查的知识点有等腰直角三角形,全等三角形的判定与性质等知识点,综合性强,难度较大,是一道难题.