精英家教网 > 初中数学 > 题目详情

【题目】如图,在同一平面内,将ABCA点逆时针旋转到ADE的位置.若ACDE,∠ABD62°,则∠ACB的度数为(  )

A.56°B.44°C.34°D.40°

【答案】C

【解析】

由旋转的性质可得ABAD,∠E=∠C,∠BAD=∠EAC,由等腰三角形的性质可求∠ABD=∠ADB62°,由三角形内角和定理求出∠BAD56°=∠EAC即可解决问题.

解:∵将ABCA点逆时针旋转到ADE的位置.

ABAD,∠E=∠C,∠BAD=∠EAC

ABAD

∴∠ABD=∠ADB62°

∴∠BAD56°=∠EAC

ACDE

∴∠ADE90°

∵∠E90°﹣∠EAC34°

∴∠ACB34°

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线NA(13)B(48)O(00)三点

(1)求该抛物线和直线AB的解析式.

(2)平移抛物线N,求同时满足以下两个条件的平移后的抛物线解析式:①平移后抛物线的顶点在直线AB上;②设平移后抛物线与y轴交于点C,如果SABC3SABO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数的图象与x轴交于A(-30),B10)两点,与y轴交于点C

1)求这个二次函数的关系解析式;

2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;

考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!

3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;

4)点Q是直线AC上方的抛物线上一动点,过点QQE垂直于x轴,垂足为E.是否存在点Q,使以点BQE为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;

5)点M为抛物线上一动点,在x轴上是否存在点Q,使以ACMQ为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数yax2+bx+ca≠0)的图象与x轴的相交情况,关于下列结论:

①方程ax2+bx0的两个根为x10x2=﹣4;②b4a0;③9a+3b+c0;其中正确的结论有(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察表格:根据表格解答下列问题:

(l) a______b_____c_____

(2) 在右图的直角坐标系中画出函数yax2bxc的图象,并根据图象,直接写出当x取什么实数时,不等式ax2bxc > 3成立;

3)该图象与x轴两交点从左到右依次分别为AB,与y轴交点为C,求过这三个点的外接圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣2x+3x轴交于点C,与y轴交于点B,抛物线yax2+x+c经过BC两点.

(1)求抛物线的解析式;

(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?

(3)(2)的结论下,过点Ey轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以PQAM为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果把函数yx2x2)的图象和函数y的图象组成一个图象,并称作图象E,那么直线y3与图象E的交点有_____个;若直线ymm为常数)与图象E有三个不同的交点,则常数m的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=mx2+2mx+m-1和直线y=mx+m-1,且m≠0

1)求抛物线的顶点坐标;

2)试说明抛物线与直线有两个交点;

3)已知点Tt0),且-1≤t≤1,过点Tx轴的垂线,与抛物线交于点P,与直线交于点Q,当0m≤3时,求线段PQ长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为实数,且,抛物线轴交于两点,与轴交于点,且抛物线的顶点在直线.是直角三角形,则面积的最大值是( .

A.1B.

C.2D.3

查看答案和解析>>

同步练习册答案