精英家教网 > 初中数学 > 题目详情
精英家教网如图所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.
分析:先证明△DCG为等腰三角形,得∠CDG=
1
2
(180°-45°)=
135°
2
,即可得∠HDG=∠GHD,从而证明GH=GD,即可证△GHD是等腰三角形.
解答:证明:∵四边形ABCD是正方形,DE=AD,
∴DE∥BC,DE=BC,
∴四边形BCED为平行四边形,
∴∠1=∠4.
又∵BD=FD,
∴∠1=∠2=∠3=
1
2
×45°,∠3=∠4=
1
2
×45°,
∴BC=GC=CD.
因此,△DCG为等腰三角形,且顶角∠DCG=45°,
∴∠CDG=
1
2
(180°-45°)=
135°
2

又∵∠GHD=90°-∠3=90°-
45°
2
=
135°
2

∴∠HDG=∠GHD,
从而GH=GD,即△GHD是等腰三角形.
点评:本题考查了正方形各边长相等、各内角相等的性质,并考查了等腰三角形底角相等,等腰直角三角形底角45°的性质,本题中正确求∠CDG的值是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD中,E为AB中点,F为AD中点,DE、CF交于O点,求证:DE⊥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD的对角线AC,BD相交于点O,DE平分∠ODC交OC于点E,若AB=2,则线段OE的长为(  )
A、
2
2
B、
2
2
3
C、2-
2
D、
2
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD,BC于M,N两点,与DC切于点P,则图中阴影部分面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示的正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC绕点A逆时针旋转90°的△AB1C1,再作出△AB1C1关于原点O成中心对称的△A1B2C2.(要求:用直尺作出图形即可,不用保留作图痕迹,不写作法.)
(2)点B1的坐标是
(-2,-3)
(-2,-3)
,点C2的坐标是
(3,1)
(3,1)

(3)求△ABC绕点A逆时针旋转90°的过程中,线段AB扫过的面积.

查看答案和解析>>

同步练习册答案