精英家教网 > 初中数学 > 题目详情

【题目】初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高 m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.

(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?

【答案】
(1)解:由题意可知,抛物线经过(0, ),顶点坐标是(4,4).

∴可设抛物线的解析式是

代入点(0, ),得: ,解得

∴抛物线的解析式是

∵当 时,

∴代表篮圈的点(7,3)在抛物线上,

∴能够投中


(2)解:∵当 时, <3.1,

∴乙能够盖帽拦截成功


【解析】(1)根据题意可知抛物线的顶点坐标,及抛物线过(0, ),设函数解析式为顶点式,再利用待定系数法求出函数解析式,然后将x=7代入函数解析式,若y=3,说明能投中,否则不能。
(2)将x=1代入函数解析式求出对应的函数值,再与3.1比较大小即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=120°,SABC=8,点MPN分别是边ABBCAC上任意一点,则:

1AB的长为____________

2PM+PN的最小值为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物— “福娃”平均每天可售出20套,每件盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每套降价4元,那么平均每天就可多售出8套。要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:

(1)边AC,AB,BC的长;

(2)点CAB边的距离;

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为 ,宽为 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个回形正方形(如图2).

1)图2中的阴影部分的面积为

2)观察图2请你写出 之间的等量关系是

3)根据(2)中的结论,若 ,则

4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式.在图形上把每一部分的面积标写清楚.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形OABC是矩形,点AC的坐标分别为(30),(01),点D是线段BC上的动点(与端点BC不重合),过点D作直线y=﹣x+m交折线OAB于点E

1)请写出m的取值范围

2)记ODE的面积为S,求Sm的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.

(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BAD和BCE均为等腰直角三角形,BAD=BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.

(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;

(2)将图1中的BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:ACN为等腰直角三角形;

(3)将图1中BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1的一张纸条,按图,把这一纸条先沿折叠并压平,再沿折叠并压平,若图3,则图2的度数为(

A.B.C.D.

查看答案和解析>>

同步练习册答案