精英家教网 > 初中数学 > 题目详情
2.如图示在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:
①∠DEF=∠DFE;
②AE=AF;
③DA平分∠EDF;④EF垂直平分AD;
其中正确的有(  )
A.1个B.2个C.3个D.4个

分析 根据角平分线的性质和等腰三角形的形状可得正确;根据全等三角形对应边相等可得AE=AF,∠ADE=∠ADF可得②③正确;根据等腰三角形三线合一的性质可得④错误,故可得到3个结论均正确.

解答 解:∵AB=AC,
∴△ABC是等腰三角形,∠B=∠C.
∵AD平分∠BAC,
∴BD=CD,
∵DE⊥AB于E,DF⊥AC于F,
∴DE=DF,
∴∠DEF=∠DFE,故①正确;
在Rt△ADE和Rt△ADF中,
$\left\{\begin{array}{l}{DE=DF}\\{AD=AD}\end{array}\right.$
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF,∠ADE=∠ADF,故②③正确;
∵AE=AF,AD平分∠BAC,
∴AD垂直平分EF,故④错误;
故选C.

点评 本题考查了等腰三角形三线合一的性质,全等三角形的判定与性质,角平分线上的点到角的两边的距离相等,线段垂直平分线上的点到线段两端点的距离相等的性质,综合题,但难度不大,熟记各性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.点A、B、C在同一条数轴上,其中点A、B表示的数分别为-3、1,若BC的长为2,则AC的长为(  )
A.4B.2C.3或5D.2或6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:(x+3)(x-1)-x(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,等边△ABC中,D为AC边上一点,以BD为斜边作Rt△BED使∠BED=90°,∠BDE=30°,连接CE并延长与射线AB交于点F.
(1)求证:AD=BF;
(2)若∠F=45°,BF=3,求△DBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,判断线段BF和AC的数量关系和位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知-a-b=5,则代数式-2a-2b+2006的值是2016.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知二次函数y=-x2-2x+2.
(1)填写表,并在给出的平面直角坐标系中画出这个二次函数的图象;
x-4-3-2-1012
y
(2)结合函数图象,直接写出方程-x2-2x+2=0的近似解(指出在哪两个连续整数之间即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在小华的某个Q群中,若每人给其它成员发一个红包,则该Q群共发了90个红包,那么这个Q群共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,试问共有4种添加方法.

查看答案和解析>>

同步练习册答案