【题目】如图,Rt△ABC中,∠C=90°,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1-S2+S3+S4等于( )
A. 4B. 6C. 8D. 10
【答案】B
【解析】
本题先根据正方形的性质和等量代换得到判定全等三角形的条件, 再根据全等三角形的判定定理和面积相等的性质得到S、S、、与△ABC的关系, 即可表示出图中阴影部分的面积和.本题的着重点是等量代换和相互转化的思想.
解:如图所示, 过点F作FG⊥AM交于点G, 连接PF.
根据正方形的性质可得: AB=BE, BC=BD,
∠ABC+∠CBE=∠CBE+∠EBD=90,即∠ABC=∠EBD.
在△ABC和△EBD中,
AB=EB,∠ABC=∠EBD, BC=BD
所以△ABC≌△EBD(SAS),故S=,同理可证,△KME≌△TPF,
△FGK≌△ACT,因为∠QAG=∠AGF=∠AQF=90, 所以四边形AQFG是矩形, 则QF//AG, 又因为QP//AC, 所以点Q、P, F三点共线, 故S+S=, S=. 因为∠QAF+∠CAT=90,∠CAT+∠CBA=90,所以∠QAF=∠CBA, 在△AQF和△ACB中, 因为
∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB
所以△AQF≌△ACB(ASA), 同理可证△AQF ≌△BCA,故
S1﹣S2+S3+S4== 3 4 =6,
故本题正确答案为B.
科目:初中数学 来源: 题型:
【题目】5月23、24日,兰州市九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4:17:15.结合统计图回答下列问题:
(1)这次共抽取了多少名学生的一分钟跳绳测试成绩?
(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?
(3)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料并解决有关问题:
我们知道:|x|=,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.
从而化简代数式|x+1|+|x﹣2|可分以下3种情况:
①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;
③当x≥2时,原式=x+1+x﹣2=2x﹣1;
综上讨论,原式=
通过以上阅读,请你解决以下问题:
(1)当x<2时,|x﹣2|= ;
(2)根据材料中的方法化简代数式|x+2|+|x﹣4|;(写出解答过程)
(3)直接写出|x﹣1|﹣4|x+1|的最大值 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第个图中正方形和等边三角形的个数之和为 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )
A. 5B. C. D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).
(1)若点P在AC上,且满足PA=PB时,求出此时t的值;
(2)若点P恰好在∠BAC的角平分线上,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:
A 型 | B 型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 240 | 200 |
经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.
(1)求 a,b 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系可中,直线y=x+1与y=﹣x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.
(1)求点A,B,C的坐标;
(2)在直线AB上是否存在点E使得四边形EODA为平行四边形?存在的话直接写出的值,不存在请说明理由;
(3)当△CBD为等腰三角形时直接写出D坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com