分析 (1)设存在点P(0,m),由已知得出OB=2,ON=AM=AN=6,BN=ON-OB=4,PM=6-m,由三角形的面积关系得出方程,解方程即可;
(2)作PQ∥AM,则PQ∥AM∥ON,由平行线的性质得出∠1=∠PAM,∠2=∠PBO,得出∠APB=∠PAM+∠PBO,即可得出结果;
(3)由平行线的性质得出∠PAM=∠3,再由三角形的外角性质即可得出结论.
解答 解:(1)设存在点P(0,m),
∵B(2,0),A(6,6),M(0,6),
∴OB=2,ON=AM=AN=6,
∴BN=ON-OB=4,PM=6-m
∵S△PAM+S△POB=S△PAB,
∴$\frac{1}{2}$×6×(6-m)+$\frac{1}{2}$×2m=$\frac{1}{2}$×(6+2)×6×$\frac{1}{2}$,
解得:m=3,
∴存在点P,使S△PAM+S△POB=S△PAB,点P坐标为(0,3);
(2)$\frac{∠APB}{∠PAM+∠PBO}$的值为定值;理由如下:
作PQ∥AM,如图1所示:则PQ∥AM∥ON,
∴∠1=∠PAM,∠2=∠PBO,
∴∠1+∠2=∠PAM+∠PBO,
即∠APB=∠PAM+∠PBO,
∴$\frac{∠APB}{∠PAM+∠PBO}$=1;
即$\frac{∠APB}{∠PAM+∠PBO}$的值为定值1;
(3)∠APB+∠PBO=∠PAM;理由如下:如图2所示;
∵AM∥OB,
∴∠PAM=∠3,
∵∠3=∠APB+∠PBO,
∴∠APB+∠PBO=∠PAM.
点评 本题是三角形综合题目,考查了坐标与图形性质、三角形面积的计算、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作平行线得出相等的角是解决问题(2)的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com