精英家教网 > 初中数学 > 题目详情
14.如图,把一个菱形绕着它的对角线的交点旋转90°,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个内角为60°,边长为2,则该“星形”的面积是6$\sqrt{3}$-6.

分析 根据菱形的性质以及AB=2,∠BAD=60°,可得出线段AO和BO的长度,同理找出A′O、D′O的长度,结合线段间的关系可得出AD′的长度,通过角的计算得出∠AED′=30°=∠EAD′,即找出D′E=AD′,再通过解直角三角形得出线段EF的长度,利用分割图形法结合三角形的面积公式以及菱形的面积公式即可求出阴影部分的面积.

解答 解:在图中标上字母,令AB与A′D′的交点为点E,过E作EF⊥AC于点F,如图所示.

∵四边形ABCD为菱形,AB=2,∠BAD=60°,
∴∠BAO=30°,∠AOB=90°,
∴AO=AB•cos∠BAO=$\sqrt{3}$,BO=AB•sin∠BAO=1.
同理可知:A′O=$\sqrt{3}$,D′O=1,
∴AD′=AO-D′O=$\sqrt{3}$-1.
∵∠A′D′O=90°-30°=60°,∠BAO=30°,
∴∠AED′=30°=∠EAD′,
∴D′E=AD′=$\sqrt{3}$-1.
在Rt△ED′F中,ED′=$\sqrt{3}$-1,∠ED′F=60°,
∴EF=ED′•sin∠ED′F=$\frac{3-\sqrt{3}}{2}$.
∴S阴影=S菱形ABCD+4S△AD′E=$\frac{1}{2}$×2AO×2BO+4×$\frac{1}{2}$AD′•EF=6$\sqrt{3}$-6.
故答案为:6$\sqrt{3}$-6.

点评 本题考查了菱形的性质、旋转的性质、解直角三角形、菱形的面积公式以及三角形的面积公式,解题的关键是求出△AD′E的面积.本题属于中档题,难度不小,历年来时常会考到周长,今年碰到了求面积,解决该题的技巧是分割图形,将阴影部分分割成菱形与四个全等的三角形,求出其中任意一个三角形的面积是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.一个不透明的袋子中装有分别标着数字1,2,3,4,5的五个乒乓球,现从袋中随机摸出一个乒乓球,则摸出的这个乒乓球上的数字为偶数的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.某舞蹈队10名队员的年龄分布如表所示:
年龄(岁)13141516
人数2431
则这10名队员年龄的众数是14岁.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.
(1)求这个月晴天的天数.
(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.关于一组数据:2,4,8,3,3,下列说法不正确的是(  )
A.中位数是3B.众数是3C.平均数是4D.方差是4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?
问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.
探究一:
如图①,当n=5时,可将正方形分割为五个1×5的矩形.
如图②,当n=6时,可将正方形分割为六个2×3的矩形.
如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形
如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形
如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形

探究二:
当n=10,11,12,13,14时,分别将正方形按下列方式分割:

所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n-5 )×( n-5 )的正方形和两个5×(n-5)的矩形.显然,5×5的正方形和5×(n-5)的矩形均可分割为1×5的矩形,而(n-5)×(n-5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.
探究三:
当n=15,16,17,18,19时,分别将正方形按下列方式分割:

请按照上面的方法,分别画出边长为18,19的正方形分割示意图.
所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n-10 )×(n-10)的正方形和两个10×(n-10)的矩形.显然,10×10的正方形和10×(n-10)的矩形均可分割为1x5的矩形,而(n-10)×(n-10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.
问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.
实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如右图,AO为入射光线,入射点为O,ON为法线(过入射点O且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON.
问题思考:
(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹,并简要说明理由;
(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B.小昕说,光线可以只经过平面镜OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;

问题拓展:
(3)如图3,两平面镜OM、ON相交于点O,且∠MON=30°,一束光线从点S出发,且平行于平面镜OM,第一次在点A处反射,经过若干次反射后又回到了点S,如果SA和AO的长均为1m,求这束光线经过的路程;
(4)如图4,两平面镜OM、ON相交于点O,且∠MON=15°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.
(1)该班男生和女生各有多少人?
(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?

查看答案和解析>>

同步练习册答案