精英家教网 > 初中数学 > 题目详情
有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.

【答案】分析:(1)由题意可知四边形PQRS必然是等腰梯形,不妨设QS=PR=SR=4,PQ=PS=RQ=x,分别过点S、Q作QR、RS的垂线,垂足为I、F,则由△QRF∽△RSI可求得RS的值,从而根据勾股定理可求得SI的值,将其与2.4比较,若小于2.4则可操作,否则不可操作.
(2)分别作直角三角形ABC斜边BC上的高AH、等腰三角形JKL的腰JL上的高KE、等腰三角形OMN底边上的高MG,易求得:AH与MG的值,对各种情况进行分析,从而不难求得其不可操作的概率.
解答:解:(1)由题意可知四边形PQRS必然是等腰梯形,(2分)不妨设QS=PR=RS=4,PQ=PS=RQ=x,分别过点S、Q作QR、RS的垂线,垂足为I、F,则由△QRF∽△RSI得到

解得
<2.4,
∴第④种塑料板“可操作”.(5分)
(2)分别作直角三角形ABC斜边BC上的高AH、等腰三角形JKL的腰JL上的高KE、等腰三角形OMN底边上的高MG,易求得:AH=2.4,MG=2.5.(2分)
又由(1)可得等腰梯形PQRS的锐角底角是72°,△JKL≌△PQR,∴KE=SI.
而黄金矩形WXYZ的宽等于>2.4,(4分)
∴第①②④三种塑料板“可操作”;而第③⑤两种塑料板“不可操作”.
∴从这五种塑料板中任意取两种至少有一种“不可操作”的概率.(3分)
点评:此题主要考查学生对等腰梯形的性质,相似三角形的应用及概率公式的综合运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.

查看答案和解析>>

科目:初中数学 来源:2012年安徽省宣城中学直升考试数学模拟试卷(一)(解析版) 题型:解答题

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.

查看答案和解析>>

科目:初中数学 来源:2010年重点高中自主招生数学模拟试卷(解析版) 题型:解答题

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.

查看答案和解析>>

同步练习册答案