精英家教网 > 初中数学 > 题目详情
已知⊙O的半径为r,圆心O到直线l的距离为d.若直线l与⊙O有交点,
则下列结论正确的是(   )
A.d=rB.0≤d≤rC.d≥rD.d<r
B

试题分析:圆与直线有交点,即可能为1个交点或2个交点,当时,圆与直线相切,即有一个交点,当时,有两个交点
点评:圆与直线有相交、相切、相离三种关系,其中相交、相切有交点,即当点与直线距离小于或者等于半径时,圆与直线有交点
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

在综合实践课上,小明用纸板制作一个圆锥形漏斗模型,它的底面半径为6,高为8,则这个圆锥漏斗的侧面积是___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义:对于任意的三角形,设其三个内角的度数分别为x°、y°和z°,若满足,则称这个三角形为勾股三角形.
(1)已知某一勾股三角形的三个内角度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;
(2)如图,△ABC是⊙O的内接三角形,AB=,AC=,BC=2,BE是⊙O的直径,交AC于D.         
 
①求证:△ABC是勾股三角形;
②求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,点P是正方形ABCD内的一点,连结PA,PB,PC.

(1)如图甲,将△PAB绕点B顺时针旋转90°到△的位置.
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△的过程中边PA所扫过区域 (图甲中阴影部分)的面积;
②若PA=3,PB=6,∠APB=135°,求PC的长.
(2)如图乙,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若相交两圆的半径分别为4和7,则它们的圆心距可能是(    )
A.2B.3C.6D.11

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②AD=CB;③点P是△ACQ的外心;④GP=GD.⑤CB∥GD.
其中正确结论的个数是(    )

A.1          B.2           C.3         D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为 (      )

A.15      B.28         C.29          D.34

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若两圆直径分别为4和6,圆心距为2,则两圆位置关系为(  )
A.外离B.相交C.外切D.内切

查看答案和解析>>

同步练习册答案