精英家教网 > 初中数学 > 题目详情

如图所示,将直角三角形ACB,∠C=90°,AC=6,沿CB方向平移得直角三角形DEF,BF=2,DG=数学公式,阴影部分面积为________.

10.5
分析:根据平移的性质,对应点间的距离等于平移的距离求出CE=BF,再求出GE,然后根据平移变换只改变图形的位置不改变图形的形状与大小可得△ABC的面积等于△DEF的面积,从而得到阴影部分的面积等于梯形ACEG的面积,再利用梯形的面积公式列式计算即可得解.
解答:∵△ACB平移得到△DEF,
∴CE=BF=2,DE=AC=6,
∴GE=DE-DG=6-=4.5,
由平移的性质,S△ABC=S△DEF
∴阴影部分的面积=S梯形ACEG=(GE+AC)•CE=(4.5+6)×2=10.5.
故答案为:10.5.
点评:本题考查了平移的性质,熟练掌握性质并求出阴影部分的面积等于梯形ACEG的面积是本题的难点,也是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:江苏期末题 题型:解答题

把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角扳ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角扳DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q。

(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD~△CDQ。此时,AP·CQ=______。
(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为a.其中 0°<a<90°,问AP·CQ的值是否改变?说明你的理由。
(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式。(图2,图3供解题用)

查看答案和解析>>

同步练习册答案