【题目】年我国个人所得税征收办法最新规定:月收入不超过元的部分不收税;月收入超过元但不超过元的部分征收的所得税;月收入超过元但不超过元的部分征收的所得税国家特别规定月收入指个人工资收入扣除专项附加费后的实际收入(专项附加费就是子女教育费用、住房贷款利息费用、租房的租金、赡养老人、大病医疗费用等费用).如某人月工资收入元,专项附加费支出元,他应缴纳个人所得税为:(元).
(1)当月收入超过元而又不超过元时,写出应缴纳个人所得税(元)与月收入(元)之间的关系式;
(2)如果某人当月专项附加费支出元,缴纳个人所得税元,那么此人本月工资是多少元?
科目:初中数学 来源: 题型:
【题目】如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商社电器从厂家购进了,两种型号的空气净化器,已知一台型空气净化器的进价比一台型空气净化器的进价多元,用元购进型空气净化器和用元购进型空气净化器的台数相同.
(1)求一台型空气净化器和一台型空气净化器的进价各为多少元?
(2)商社电器计划型净化器的进货量不少于台且是型净化器进货量的三倍,在总进货款不超过万元的前提下,试问有多少种进货方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在△ABC中,∠C=90°,AC=3cm,BC=4cm,点P是边BC上由B向C运动(不与点B、C重合)的一动点,P点的速度是1cm/s,设点P的运动时间为t,过P点作AC的平行线交AB与点N,连接AP,
(1)请用含有t的代数式表示线段AN和线段PN的长,
(2)当t为何值时,△APN的面积等于△ACP面积的三分之一?
(3)在点P的运动过程中,是否存在某一时刻的t的值,使得△APN的面积有最大值,若存在请求出t的值并计算最大面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点为坐标原点,直线与轴、轴分别交于点、,点在轴负半轴上,且.
(1)求的值;
(2)把沿轴翻折,使点落在轴的点处,点为线段上一点,连接交轴于点,设点横坐标为,的面积为,求与、的函数解析式(用含、的代数式表示);
(3)在(2)的条件下,若,点的纵坐标为,求直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=x﹣42(x≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )
A.252元/间B.256元/间C.258元/间D.260元/间
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.
(1)当BP= 时,△MBP~△DCP;
(2)当⊙P与正方形ABCD的边相切时,求BP的长;
(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,过点的两条直线分别交轴于,两点,且、两点的纵坐标分别是一元二次方程的两个根.
(1)试问:直线与直线是否垂直?请说明理由.
(2)若点在直线上,且,求点的坐标.
(3)在(2)的条件下,在直线上寻找点,使以、、三点为顶点的三角形是等腰三角形,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,连接,将绕点作顺时针方向旋转得到(与重合),且点刚好落在的延长上,与相交于点.
(1)求矩形与重叠部分(如图1中阴影部分)的面积;
(2)将以每秒2的速度沿直线向右平移,如图2,当移动到点时停止移动.设矩形与重叠部分的面积为,移动的时间为,请你直接写出关于的函数关系式,并指出自变量的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间,使得成为等腰三角形?若存在,请你直接写出对应的的值,若不存在,请你说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com