精英家教网 > 初中数学 > 题目详情

如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?

 

【答案】

 

【解析】

试题分析:设⊙C与AB的切点为D,根据切线的性质可知CD⊥AB,即CD为直角三角形斜边上的高,先根据勾股定理求出斜边长,再根据等面积法即可求得结果。

如图所示,过C作CD⊥AB于D;

∵∠ACB=90°,CA=6,CB=8,

∴AB=10.

AC•BC=AB•CD,

,解得

时,⊙C与AB相切.

考点:本题考查的是直线与圆的位置关系

点评:解答本题的关键是根据切线垂直于经过切点的半径得到斜边上的高CD的长即为所求。同时掌握设圆心到直线的距离为d,圆的半径为r,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图所示,Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中一定相等的线段错误的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.
(1)求证:△ABD∽△DCE;
(2)当△ADE是等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,Rt△ABC中,∠C=90°,AB=4,△ABC的面积为
5
2
,则tanA+tanB等于(  )精英家教网
A、
4
5
B、
5
2
C、4
D、
16
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,Rt△ABC中,∠C=90°,∠ABC=60°,DC=11,D点到AB的距离为2,求BD的长.

查看答案和解析>>

同步练习册答案