精英家教网 > 初中数学 > 题目详情

如图,已知抛物线与直线交于点.点是抛物线上之间的一个动点,过点分别作轴、轴的平行线与直线交于点

(1)求抛物线的函数解析式;
(2)若点的横坐标为2,求的长;
(3)以为边构造矩形,设点的坐标为,求出之间的关系式.

(1)抛物线解析式为;(2);(3).

解析试题分析:(1)由点的坐标在直线上,可求得该点坐标.将该点坐标代入抛物线函数中;(2)可先求得点坐标,然后求取点坐标,则长可求;(3)由点的坐标可推出点的坐标,依据抛物线的函数式,将含的点坐标代入函数式,可得之间的关系式.
试题解析:(1)在直线上,
,解得:
是抛物线上的一点,将点代入,可得
∴抛物线解析式为
(2)的横坐标为2,的坐标为
代入,解得:(舍去),故
(3)的坐标为
∴点的坐标为,点C的坐标为
∴点B的坐标为
把点代入,可得
之间的关系式为..
【考点】1.二次函数的图形;2.二次函数解析式的求法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知二次函数的图像经过原点及点A(1,2),与x轴相交于另一点B.

(1)求:二次函数的解析式及B点坐标;
(2)若将抛物线为对称轴向右翻折后,得到一个新的二次函数,已知二次函数与x轴交于两点,其中右边的交点为C点.点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D.点E、点F也随之运动);
①当点E在二次函数y1的图像上时,求OP的长.
②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,同时线段OC上另一个点Q从C点出发向O点做匀速运动,速度为每秒2个单位长度(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AC交于G点,以QG为边在QG的左侧作正方形QGMN(当Q点运动时,点G、点M、点N也随之运动),若P点运动t秒时,两个正方形分别有一条边恰好落在同一条直线上(正方形在x轴上的边除外),求此刻t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知关于的一元二次方程有实数根,为正整数.
(1)求的值;
(2)当此方程有两个非零的整数根时,将关于的二次函数的图象向下平移8个单位,求平移后的图象的解析式;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

甲车在弯路做刹车试验,收集到的数据如下表所示:

速度(千米/时)
0
5
10
15
20
25

刹车距离(米)
0

2

6


(1)请用上表中的各对数据作为点的坐标,在如图所示的坐标系中画出刹车距离(米)与速度(千米/时)的函数图象,并求函数的解析式;

(2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了.事后测得甲、乙两车刹车距离分别为12米和10.5米,又知乙车刹车距离(米)与速度(千米/时)满足函数,请你就两车速度方面分析相撞原因.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表表示:

等级(x级)
一级
二级
三级

生产量(y台/天)
78
76
74

(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出之间的函数关系式:_____;
(2)每台护眼灯可获利z(元)关于等级x(级)的函数关系式:______;
(3)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某文具店销售一种进价为10元/个的签字笔,物价部门规定这种签字笔的售价不得高于14元/个,根据以往经验:以12元/个的价格销售,平均每周销售签字笔100个;若每个签字笔的销售价格每提高1元,则平均每周少销售签字笔10个. 设销售价为x元/个.
(1)该文具店这种签字笔平均每周的销售量为           个(用含x的式子表示);
(2)求该文具店这种签字笔平均每周的销售利润w(元)与销售价x(元/个)之间的函数关系式;
(3)当x取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数.

(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。

(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

查看答案和解析>>

同步练习册答案