精英家教网 > 初中数学 > 题目详情
如图,P是双曲线y=
4
x
(x>0)的一个分支上的一点,以点P为圆心,1个单位长度为半径作⊙P,当⊙P与直线y=3相切时,点P的坐标为______.
(1)设点P的坐标为(x,y),
∵P是双曲线y=
4
x
(x>0)的一个分支上的一点,
∴xy=k=4,
∵⊙P与直线y=3相切,
∴p点纵坐标为:2,
∴p点横坐标为:2,
∵⊙P′与直线y=3相切,
∴p点纵坐标为:4,
∴p点横坐标为:1,
∴x=1或2,
P的坐标(1,4)或(2,2);
故答案为:(1,4)或(2,2);
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,直线l1:x=1,l2:x=2,l3:x=3,l4:x=4,…,与函数y=
2
x
(x>0)的图象分别交于点A1、A2、A3、A4、…;与函数y=
5
x
(x>0)
的图象分别交于点B1、B2、B3、B4、….如果四边形A1A2B2B1的面积记为S1,四边形A2A3B3B2的面积记为S2,四边形A3A4B4B3的面积记为S3,…,以此类推.则S10的值是(  )
A.
19
60
B.
23
88
C.
25
104
D.
63
220

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两个反比例函数y=
k
x
y=
1
x
在第一象限内的图象如图所示,点P在y=
k
x
的图象上,PC⊥x轴于点C,交y=
1
x
的图象于点A,PD⊥y轴于点D,交y=
1
x
的图象于点B,当点P在y=
k
x
的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y1=kx+b与反比例函数y2=
m
x
交于A、B两点,与x轴交于点C,tan∠OCB=
2
3
,已知点D(-6,0),BD=BO=5.
(1)求一次函数和反比例函数的解析式;
(2)求点A的坐标,并根据图象直接写出当y1>y2时的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△OP1A1,△A1P2A2是等腰直角三角形,点P1、P2在函数y=
16
x
的图象上,斜边OA1、A1A2都在横轴上,则点A2的坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-x+1与x轴交于点A,与y轴交于点B,P(a,b)为双曲线y=
1
2x
(x>0)
上的一点,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F.
(1)当点P的坐标为(
3
4
2
3
)时,求E、F两点的坐标及△EOF的面积;
(2)用含a,b的代数式表示E、F两点的坐标及△EOF的面积;
(3)求BE•AF的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=2x-6与反比例函数y=
k
x
(x>0)
的图象交于点A(4,2),与x轴交于点B.
(1)求k的值及点B的坐标;
(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某学校锅炉房建有一个储煤库,开学初购进一批煤,按每天用煤0.6吨计算,一学期(按150天计)刚好用完,若每天的耗煤量为x(吨),那么这批煤能维持y(天).
(1)求y与x之间的函数关系式;
(2)在给定的坐标系中,作出(1)中求出的函数图象;
(3)若每天节约0.1吨煤,这批煤能维持多少天?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x轴所在的直线绕着原点O逆时针旋转α度角后的图形.若它与反比例函数y=
3
x
的图象分别交于第一、三象限的点B,D,已知点A(-m,O)、C(m,0).
(1)直接判断并填写:不论α取何值,四边形ABCD的形状一定是______;
(2)①当点B为(p,1)时,四边形ABCD是矩形,试求p,α,和m的值;
②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个?(不必说理)
(3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点的坐标,若不能,说明理由.

查看答案和解析>>

同步练习册答案