精英家教网 > 初中数学 > 题目详情

【题目】已知,如图1,在中,对角线,如图2,点从点出发,沿方向匀速运动,速度为,过点于点;将沿对角线剪开,从图1的位置与点同时出发,沿射线方向匀速运动,速度为,当点停止运动时,也停止运动.设运动时间为,解答下列问题:

1)当为何值时,点在线段的垂直平分线上?

2)设四边形的面积为,试确定的函数关系式;

3)当为何值时,有最大值?

4)连接,试求当平分时,四边形与四边形面积之比.

【答案】1,(2四边形AHGD

3)当 四边形的面积最大,最大面积为

4

【解析】

1)由题意得:利用垂直平分线的性质得到:列方程求解即可,

2四边形AHGD分别求出各图形的面积,代入计算即可得到答案,

3)利用(2)中解析式,结合二次函数的性质求最大面积即可,

4)连接 从而求解此时时间,分别求解四边形EGFD和四边形AHGE的面积,即可得到答案.

解:(1)如图,由题意得:

及平移的性质,

在线段的垂直平分线上,

时,点在线段的垂直平分线上.

2 ,

点在上,

四边形AHGD

3 四边形AHGD

抛物线的对称轴是:

时,的增大而增大,

四边形的面积最大,最大面积为:

4)如图,连接

平分

此时:

四边形EGFD

四边形ABGE

四边形AHGE.

四边形EGFD:四边形AHGE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数yx22mxm2m1m是常数).

1)求证:不论m为何值,该函数的图像的顶点都在函数yx1的图像上.

2)若该函数的图像与函数yxb的图像有两个交点,则b的取值范围为(

Ab0 Bb>-1 Cb>- Db>-2

3)该函数图像与坐标轴交点的个数随m的值变化而变化,直接写出交点个数及对应的m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交ADE,交BA的延长线于点F.

1)求证:.

2)如果,求线段PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,CDAB边上的中线,ECD的中点,过点CAB的平行线交AE的延长线于点F,连接BF

1)求证:CFAD

2)若CACB,试判断四边形CDBF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,山顶有一塔,塔高.计划在塔的正下方沿直线开通穿山隧道.从与点相距处测得的仰角分别为,从与点相距处测得的仰角为.求隧道的长度.(参考数据:.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AM是⊙O直径,弦BCAM,垂足为点N,弦CDAM于点E,连按ABBE

1)如图1,若CDAB,垂足为点F,求证:∠BED2BAM

2)如图2,在(1)的条件下,连接BD,若∠ABE=∠BDC,求证:AE2CN

3)如图3ABCDBECD47AE11,求EM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).

(1)求y1与y2的函数解析式.

(2)求每天的销售利润W与x的函数解析式.

(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一名大学毕业生响应国家自主创业的号召,在成都市高新区租用了一个门店,聘请了两名员工,计划销售一种产品.已知该产品成本价是20/件,其销售价不低于成本价,且不高于30/件,员工每人每天的工资为200元.经过市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.

1)求yx之间的函数关系式;

2)求每件产品销售价为多少元时,每天门店的纯利润最大?最大纯利润是多少?(纯利润=销售收入﹣产品成本﹣员工工资)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某儿童游乐园推出两种门票收费方式:

方式一:购买会员卡,每张会员卡费用是元,凭会员卡可免费进园次,免费次数用完以后,每次进园凭会员卡只需元;

方式二:不购买会员卡,每次进园是(两种方式每次进园均指单人)设进园次数为( 为非负整数)

1)根据题意,填写下表:

进园次数()

···

方式一收费()

···

方式二收费()

···

2)设方式一收费元,方式二收费元,分别写出关于的函数关系式;

3)当时,哪种进园方式花费少?请说明理由.

查看答案和解析>>

同步练习册答案