数学课上,李老师出示了如下框中的题目.
在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由. |
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE DB(填“>”,“<”或“=”).
图1 图2
(第27题)
(2)特例启发,解答題目
解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”)
理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(画出草图,写出简要过程).
科目:初中数学 来源: 题型:
某工厂承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务,已知乙车间的工作效率是甲车间的1.5倍。求甲、乙两车间每天加工零件各多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图①,在正方形网格中,每个小正方形的边长为1.在网格中构造格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),AB、BC、AC三边的长分别为、、,利用网格就能计算三角形的面积.
(1)请你将△ABC的面积直接填写在横线上.__________________.
(2)在图②中画出△DEF,DE、EF、DF三边的长分别为、、.
①判断三角形的形状,说明理由.
②求这个三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
把一个小球以20米/秒的速度竖起向上弹出,它在空中的高度h(米)与时间t(秒),满足关系
h=20t-5t,当小球达到最高点时,小球的运动时间为( )
A.1秒 B. 2秒 C.4秒 D.20秒
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N,给出下列结论:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=S△ABC,其中正确的结论是(只填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com