【题目】如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.
【答案】13
【解析】
本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=13.
解:∵ABCD是正方形(已知),
∴AB=AD,∠ABC=∠BAD=90°;
又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,
∴∠FBA=∠EAD(等量代换);
∵BF⊥a于点F,DE⊥a于点E,
∴在Rt△AFB和Rt△AED中,
∵ ,
∴△AFB≌△DEA(AAS),
∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),
∴EF=AF+AE=DE+BF=8+5=13.
故答案为:13.
科目:初中数学 来源: 题型:
【题目】在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A、B两地相距4800米,甲从A地出发步行到B地,20分钟后乙从B地出发骑自行车到A地,设甲步行的时间为x分钟,甲、乙两人离A地的距离分别为米、米,、与x的函数关系图象如图所示,根据图象解答下列问题:
(1)直接写出y、y与x的函数关系式,并写出自变量x的取值范围;
(2)求甲出发后多少分钟两人相遇,相遇时乙离A地多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的三边长分别为a,b,c.
(1)若a,b,c满足a2+b2+c2=ab+bc+ca,试判断△ABC的形状;
(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的半径为r,现要在圆中画一个的菱形ABCD,
(1)当顶点D也落在圆上时,四边形ABCD的形状是___________(写出一种四边形的名称),边长为_____________(用含r的代数式表示) .
(2)当菱形有三个顶点落在圆上,且边长为r时,请求出作为弦的那条对角线所对的圆周角的度数.
(3)在(2)的前提下,当其中一条对角线长为3时,求该菱形的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,△ABC中,∠BAC=90°,AB=AC.
(1)如图1,若AB=8,点D是AC边上的中点,求S△BCD;
(2)如图2,若BD是△ABC的角平分线,请写出线段AB、AD、BC三者之间的数量关系,并说明理由;
(3)如图3,若D、E是AC边上两点,且AD=CE,AF⊥BD交BD、BC于F、G,连接BE、GE,求证:∠ADB=∠CEG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.
(1)求证:四边形BFDE为平行四边形;
(2)若四边形BFDE为菱形,且AB=2,求BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com