分析 由BD⊥AC,CE⊥AB得到∠AEC=∠ADB=90°,利用∠EAC=∠DAB可判断△AEC∽△ADB,则$\frac{AE}{AD}$=$\frac{AC}{AB}$,利用比例性质得$\frac{AE}{AC}=\frac{AD}{AB}$,加上∠EAD=∠CAB,根据三角形相似的判定方法即可得△ADE∽△ABC;再根据含30度的直角三角形三边的关系得到AC=2AE,然后根据△ADE∽△ABC,运用相似比克得到BC=2DE.
解答 证明:∵BD⊥AC,CE⊥AB,
∴∠AEC=∠ADB=90°,
∵∠EAC=∠DAB,
∴△AEC∽△ADB,
∴$\frac{AE}{AD}$=$\frac{AC}{AB}$,
∴$\frac{AE}{AC}=\frac{AD}{AB}$,
又∵∠EAD=∠CAB,
∴△ADE∽△ABC,
∵在Rt△AEC中,∠A=60°,
∴∠ACE=30°,
∴AC=2AE,
∴$\frac{AE}{AC}=\frac{DE}{BC}$,
即$\frac{AE}{2AE}$=$\frac{DE}{BC}$,
∴DE=$\frac{1}{2}$BC.
点评 本题考查了相似三角形的判定与性质:有两组角对应相等的两三角形相似;有两组对应边的比相等且夹角相等的两个三角形相似;相似三角形的对应边的比相等,对应角相等,相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com