分析 根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,由点F是DE的中点,可求出EG、GF,因为AE=AC-EC=2,可求出AG,然后运用勾股定理求出AF.
解答 解:作FG⊥AC,
根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,
∵点F是DE的中点,
∴FG∥CD
∴GF=$\frac{1}{2}$CD=$\frac{1}{2}$AC=3
EG=$\frac{1}{2}$EC=$\frac{1}{2}$BC=2
∵AC=6,EC=BC=4
∴AE=2
∴AG=4
根据勾股定理,AF=5.
点评 本题主要考查了旋转的性质、三角形中位线性质、勾股定理的综合运用,作垂线构造直角三角形是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 正方形 | B. | 菱形 | C. | 矩形 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3 | B. | $\frac{15}{4}$ | C. | 5 | D. | $\frac{15}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com