【题目】由几个相同的边长为1的小立方块搭成的几何体的俯视图如下图,格中的数字表示该位置的小立方块的个数.
(1)请在下面方格纸中分别画出这个向何体的主视图和左视图.
(2)根据三视图;这个组合几何体的表面积为 _________ 个平方单位.(包括底面积)
(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大是为 _________ 个平方单位.(包括底面积)
【答案】(1)见解析(2)24(3)26
【解析】
主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1;
上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.
要使表面积最大,则需满足两正方体重合的最少,画出俯视图,计算表面积即可.
主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1,
图形分别如下:
由题意可得:上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,
故可得表面积为:.
要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:
这样上面共有3个小正方形,下面共有3个小正方形;左面共有5个小正方形,右面共有5个正方形;前面共有5个小正方形,后面共有5个正方形,
表面积为:.
故答案为:24、26.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点A在第一象限,点A,B关于y轴对称.
(1)若A(1,3),写出点B的坐标;
(2)若A(a,b),且△AOB的面积为a2,求点B的坐标(用含a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形是矩形纸片且,对折矩形纸片,使与重合,折痕为,展平后再过点折叠矩形纸片,使点落在上的点处,折痕与相交于点,再次展开,连接,.
(1)连接,求证:是等边三角形;
(2)求,的长;
(3)如图,连接将沿折叠,使点落在点处,延长交边于点,已知,求的长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=10,BC=8,P、Q分别是AB、BC边上的点,且AP=BQ=a (其中0<a<8).
(1)若PQ⊥BC,求a的值;
(2)若PQ=BQ,把线段CQ绕着点Q旋转180°,试判别点C的对应点C’是否落在线段QB上?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A=a2-2ab+b2,B=a2+2ab+b2.
(1)求A+B;
(2)求(A+B);
(3)如果2A-3B+C=0,那么C的表达式是什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC相切于点D,与AC相交于点E,与AB相交于点F,连接AD.
(1)求证:AD平分∠BAC;
(2)若点E为弧AD的中点,探究线段BD,CD之间的数量关系,并证明你的结论;
(3)若点E为弧AD的中点,CD=,求弧DF与线段BD,BF所围成的阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商欲将A市的一批水果运往B市销售,有火车和汽车两种运输工具,运输过程中的损耗均为160元/时。有关数据如下:
运输工具 | 平均速度(千米/时) | 运费(元/千米) | 装卸费(元) |
火车 | 100 | 18 | 1800 |
汽车 | 80 | 22 | 1000 |
(1)如果汽车的总支出费用比火车费用多960元,求出A市与B市之间的路程是多少千米?请列方程解答。
(2)如果A市与C市之间的距离为300千米,要想将这批水果运往C市销售。选择哪种运输工具比较合算呢?请通过计算说明你的理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,连接BE交AD、AC分别于F. N,CM平分∠ACB交BN于M,下列结论:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正确的结论有( )
A. 1个B. 2个
C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知数轴上三点对应的数分别为、3、5,点为数轴上任意一点,其对应的数为.点与点之间的距离表示为,点与点之间的距离表示为.
(1)若,则 ;
(2)若,求的值;
(3)若点从点出发,以每秒3个单位的速度向右运动,点以每秒1个单位的速度向左运动,点以每秒2个单位的速度向右运动,三点同时出发.设运动时间为秒,试判断:的值是否会随着的变化而变化?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com