精英家教网 > 初中数学 > 题目详情
(2009•孝感)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=,BC=1,求⊙O的半径.

【答案】分析:(1)要证PB是⊙O的切线,只要连接OB,求证∠OBP=90°即可;
(2)连接OP,交AB于点D,求半径时,可以证明△APO∽△DPA,还可证明△PAO∽△ABC,在Rt△OAP中利用勾股定理.
解答:(1)证明:连接OB,
∵OA=OB,
∴∠OAB=∠OBA,
∵PA=PB,
∴∠PAB=∠PBA,
∴∠OAB+∠PAB=∠OBA+∠PBA,
∴∠PAO=∠PBO.(2分)
又∵PA是⊙O的切线,
∴∠PAO=90°,
∴∠PBO=90°,
∴OB⊥PB.(4分)
又∵OB是⊙O半径,
∴PB是⊙O的切线,(5分)
说明:还可连接OB、OP,利用△OAP≌△OBP来证明OB⊥PB.

(2)解:连接OP,交AB于点D,
∵PA=PB,
∴点P在线段AB的垂直平分线上.
∵OA=OB,
∴点O在线段AB的垂直平分线上,
∴OP垂直平分线段AB,(7分)
∴∠PDA=90°.
又∵PA切⊙O于点A,
∴∠PAO=90°,
∴∠PAO=∠PDA,
又∵∠APO=∠DPA,
∴△APO∽△DPA,

∴AP2=PO•DP.
又∵OD=BC=
∴PO(PO-OD)=AP2,即PO(PO-)=AP2,即:PO2-PO=
解得PO=2,(9分)
在Rt△APO中,,即⊙O的半径为1.(10分)
说明:求半径时,还可证明△PAO∽△ABC或在Rt△OAP中利用勾股定理.
点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质,及勾股定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源:2010年福建省莆田市中考数学仿真模拟试卷(二)(解析版) 题型:解答题

(2009•孝感)如图,点P是双曲线(k1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=(0<k2<|k1|)于E、F两点.
(1)图1中,四边形PEOF的面积S1=______(用含k1、k2的式子表示);
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省孝感市中考数学试卷(解析版) 题型:解答题

(2009•孝感)如图,点P是双曲线(k1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=(0<k2<|k1|)于E、F两点.
(1)图1中,四边形PEOF的面积S1=______(用含k1、k2的式子表示);
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省孝感市中考数学试卷(解析版) 题型:填空题

(2009•孝感)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是   

查看答案和解析>>

科目:初中数学 来源:2009年湖北省孝感市中考数学试卷(解析版) 题型:选择题

(2009•孝感)如图,将放置于平面直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,则B′点的坐标为( )

A.(
B.(
C.(
D.(

查看答案和解析>>

同步练习册答案