精英家教网 > 初中数学 > 题目详情

已知一次函数的图象经过点,且与函数的图象相交于点
(1)求的值;
(2)若函数的图象与轴的交点是B,函数的图象与轴的交点是C,求四边形的面积(其中O为坐标原点).

(1)a=;(2)SABOC=.

解析试题分析:(1)根据一次函数y=kx+b的图象与函数的图象相交于点,先求a的值,
(2)再把A、P两点的坐标代入一次函数y=kx+b中,求得k、b的值,再由题意求得B、C两点的坐标,从而求出四边形ABOC的面积
试题解析:
(1)由题意将A坐标代入得:a=× +1=
(2)∵直线y=kx+b过点P(0,?3),A(),
,解得
∴函数y=2x-3的图象与x轴的交点B(,0)
函数的图象与y轴的交点C(0,1)
又S△ACP=×4×,S△BOP=×3× = ,(7分)
∴SABOC=S△ACP?S△BOP= ? = .(8分)
考点:一次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

在同一直角坐标系中画出下列函数的图象:.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:

(1)甲、乙两根蜡烛燃烧前的高度分别是         , 从点燃到燃尽所用的时间分别                
(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;
(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么事件段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某工厂现有甲种原料360kg,乙种原料290kg,计划用它们生产A、B两种产品共50件,已知每生产一件A种产品,需要甲种原料9kg、乙种原料3kg,获利700元,生产一件B种产品,需要甲种原料4kg、乙种原料10kg,可获利1200元.
(1)利用这些原料,生产A、B两种产品,有哪几种不同的方案?
(2)设生产两种产品总利润为y(元),其中生产A中产品x(件),试写出y与x之间的函数解析式.
(3)利用函数性质说明,采用(1)中哪种生产方案所获总利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,双曲线与直线相交于点A(4,m)、B.

(1)求m的值及直线的函数表达式;
(2)求△AOB的面积;
(3)当x为何值时,?(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线与x轴、y轴分别交于点A、B,线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面积;
(2)求点C坐标;
(3)点P是x轴上的一个动点,设P(x,0)
①请用x的代数式表示PB2、PC2
②是否存在这样的点P,使得|PC-PB|的值最大?如果不存在,请说明理由;
如果存在,请求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

一次函数y=kx+4的图象经过点(-3,-2),则
(1)求这个函数表达式;并画出该函数的图象.
(2)判断(-5,3)是否在此函数的图象上;
(3)求把这条直线沿x轴向右平移1个单位长度后的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数与反比例函数的图象相交于点A,且点A的纵坐标为1.

(1)求反比例函数的解析式;
(2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知一次函数y=k1x+b(k1≠0)的图象分别与x轴,y轴交于A,B两点,且与反比例函数(k2≠0)的图象在第一象限的交点为C,过点C作x轴的垂线,垂足为D,若OA=OB=OD=2.

(1)求一次函数的解析式;
(2)求反比例函数的解析式.

查看答案和解析>>

同步练习册答案