精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC是直角边长为2的等腰直角三角形,直角边AB是半圆O1的直径,半圆O2过C点且与半圆O1相切,则图中阴影部分的面积是(  )
A、
7-π
9
B、
5-π
9
C、
7
9
D、
5
9
分析:首先作出图形,由等腰直角三角形性质可知S2=S6,S1=S5,所以S阴=S直角梯形DEAP,设PA=x,CO2=y,利用勾股定理求出y的值,进而求出阴影的面积.
解答:精英家教网解:如图,
由等腰直角三角形性质可知S2=S6,S1=S5
 所以S阴=S直角梯形DEAP,设PA=x,CO2=y,
x+2y=2,x=2-2y,
连接O1O2,(x+y)2+1=(y+1)2
解得y=
2
3

S阴=
1
2
×2×2-
2
3
×
2
3
-2×1×
1
2
=
5
9

故选D.
点评:本题主要考查面积及等积变换的知识点,解答本题的关键是熟练掌握等腰直角三角形的性质和勾股定理的应用,此题难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,△ABC是直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′2的长等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面短文:
如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)精英家教网精英家教网
解答问题:
(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1
 
S2(填“>”“=”或“<”).
(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画
 
个,利用图③把它画出来.
(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出
 
个,利用图④把它画出来.
(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是直角三角形,∠ACB=90°.
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)精英家教网
①作△ABC的外接圆,圆心为O;
②以线段AC为一边,在AC的右侧作等边△ACD;
③连接BD,交⊙O于点E,连接AE,
(2)综合与运用:在你所作的图中,若AB=4,BC=2,则:
①AD与⊙O的位置关系是
 

②线段AE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是直角边长为4的等腰直角三角形,直角边AB是半圆O1的直径,半圆O2过C点且与半圆O1相切,则图中阴影部分的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是直角三角形,∠BAC=90°,AD、AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm.
(1)求AD的长;
(2)求△AEC的面积.

查看答案和解析>>

同步练习册答案