精英家教网 > 初中数学 > 题目详情
13.如图,∠A+∠B+∠C+∠D+∠E+∠F的和等于360度.

分析 利用三角形外角性质可得∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,三式相加易得∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,而∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,从而可求∠A+∠B+∠C+∠D+∠E+∠F.

解答 解:如右图所示,
∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,
∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,
又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,
∴∠AHG+∠DNG+∠EGN=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为:360.

点评 本题考查了三角形内角和定理.解题的关键是三角形内角和定理与三角形外角性质的联合使用,知道三角形的外角和等于360°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.计算:
(1)b3•bm•bm+1
(2)(-2a62+(-3a33•a3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)若5m=6,5n=3,求5m-n的值;
(2)若2x=3,4y=5,求2x-2y的值;
(3)若10m=20,10n=$\frac{1}{5}$,求9m÷32n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,在平面直角坐标系中,点M为抛物线y=-x2+4的顶点,点A,B(点A与点M不重合)为抛物线上的动点,且AB∥x轴,以AB为边画矩形ABCD,点M在CD上,连结AC交抛物线于点E.
(1)当点A,B在x轴上时,求AE和CE的长;
(2)如图2,当原点O在AC上时,求直线AC的解析式;
(3)在点A,B的运动过程中,$\frac{AE}{EC}$是否为定值?如果是,请求出定值;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)在等腰梯形ABCD中,若AD∥BC,PA=PD.求证:PB=PC
(2)在上面的题目中的“等腰梯形ABCD”设为另一个四边形,其余条件不变,使PB=PC仍然成立.应改成一个什么样的四边形,请画出图形.并写出已知、求证.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.设x1、x2是方程x2+x-1=0的两个实数根,那么x${\;}_{1}^{3}$-2x${\;}_{2}^{2}$+2008=2006.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,点P是一次函数y=3x-2图象上的动点,过点P作直线PM⊥Ox,垂足为点M,PM交一次函数y=$\frac{2}{3}$x+1的图象于点Q,设点P的横坐标为m,当线段PQ=1时,m的值为$\frac{12}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.2015×2016×2017+25×32×7=(a+b)3且10≤a≤16,则b的最小值2000.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.小明学了有理数的乘方后,知道23=8,25=32,他问老师,有没有20,2-3,如果有,等于多少?老师耐心提示他:25÷23=4,25-3=4,即25÷23=25-3=22=4,…“哦,我明白了了,”小明说,并且很快算出了答案,亲爱的同学,你想出来了吗?
(1)请仿照老师的方法,推算出20,2-3的值.
(2)据此比较(-3)-2与(-2)-3的大小.(写出计算过程)

查看答案和解析>>

同步练习册答案