【题目】如图,直线经过正方形的顶点,先分别过此正方形的顶点、作于点、于点.然后再以正方形对角线的交点为端点,引两条相互垂直的射线分别与,交于,两点.若,,则线段长度的最小值是___.
【答案】
【解析】
根据正方形的性质可得,,然后利用同角的余角相等求出,再利用“角角边”证明和全等,根据全等三角形对应边相等可得,设,,然后列出方程组求出、的值,再利用勾股定理列式求出正方形的边长,根据正方形的对角线平分一组对角可得,根据同角的余角相等求出,然后利用“角边角”证明和全等,根据全等三角形对应边相等可得,判断出是等腰直角三角形,再根据垂线段最短和等腰直角三角形的性质可得时最短,然后求解即可.
在正方形中,,,
,
,
,
,
在和中,
,
,
,
设,,
,,
,
消掉并整理得,,
解得,,
当,,
当,,
由勾股定理得,,
在正方形中,,,,
,
,
,
,
在和中,
,
,
,
是等腰直角三角形,
由垂线段最短可得,时最短,也最短,
此时,的最小值为.
故答案为:.
科目:初中数学 来源: 题型:
【题目】中国共产党第十九次全国代表大会提出了要坚定实施七大战略,某数学兴趣小组从中选取了四大战略进行调查,A:科教兴国战略,B:人才强国战略,C:创新驱动发展战略,D:可持续发展战略,要求被调查的每位学生只能从中选择一个自已最关注的战略,根据调查结果,该小组绘制了如图所示的两幅不完整的统计图,请你根据统计图中提供的信息,解答下列问题:
(1)求本次抽样调查的学生人数;
(2)求出统计图中m、n的值;
(3)在扇形统计图中,求战略B所在扇形的圆心角度数;
(4)若该校有3000名学生,请估计出选择战略A和B共有的学生数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD 是△ABC 的角平分线,DE,DF 分别是△BAD 和△ACD 的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形 AEDF 是正方形;④AE+DF=AF+DE.其中正确的是_________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)AC的长等于_____;
(Ⅱ)在线段AC上有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在同一平面直角坐标系中画出函数和的图象.
观察图象,说出抛物线的顶点坐标、开口方向、对称轴;
说出各函数的最值;
说明各函数图象在对称轴两侧部分的函数值随的增大而变化的情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).
(1)∠DCB= 度,当点G在四边形ABCD的边上时,x= ;
(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;
(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,CE=2cm.
求:(1)∠AEB 度数.
(2)BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com