精英家教网 > 初中数学 > 题目详情
⊙O中AB是直径,AC是弦,点B,C间的距离是2cm,那么圆心到弦AC的距离是
 
cm.
分析:先画出图形,由圆周角定理得∠C=90°,则OD∥BC,再由三角形的中位线定理,得OD=
1
2
BC=1cm.
解答:精英家教网解:如图,
∵AB是直径,∴∠C=90°,
∵OD⊥AC,∴OD∥BC,
∴OD=
1
2
BC,
∵BC=2cm,
∴OD=1cm,
∴圆心到弦AC的距离是1cm,
故答案为1.
点评:本题考查了垂径定理和勾股定理,解此类题目要注意将圆的问题转化成三角形的问题再进行计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.
(1)证明:B、C、E三点共线;
(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=
2
OM;
(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=
2
OM1是否成立?若是,请证明;若精英家教网不是,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在圆O中AB是直径,AT是经过点A的切线,弦CD垂直AB于P点,线段CP的中点为Q,连接BQ并延长交切线AT于T点,连接OT.
(1)求证:BC∥OT;
(2)若⊙O直径为10,CD=8,求AT的长;
(3)延长TO交直线CD于R,若⊙O直径为10,CD=8,求TR的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中AB是直径,D是上半圆中点,E是下半圆中点.点C是圆上一点(不与B、E重合)连接AD、BD、AC、BC.设BC长度为n,AC长度为m.
(1)当m=8,n=6时,求四边形ACBD的面积S;
(2)用含m、n的式子表示四边形ACBD的面积S;
(3)你可知道tan∠DAC=
m+nm-n
吗?请你详细说明理由;
(4)如图,当点C运动至弧AD或弧BD上时,(3)中结论是否成立?若成立,请精英家教网说明理由;若不成立,请用含m、n的式子表示tan∠DAC.(直接写答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上,M是线段BE的中点,N是线段AD的中点.
(1)连接BD,AE,求证:△BCD≌△ACE;
(2)猜想图1中的MN与OM的数量关系(直接写出结果);
(3)将△DCE绕点C逆时针旋转α(0°<α<90°)(备用图2)后,其他条件不变,(2)中的结论仍然成立吗?若是,画出图形并证明;若不是,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角△DCE中,∠DCE是直角,点D在线段AC上.
(1)问B、C、E三点在一条直线上吗?为什么?
(2)若M是线段BE的中点,N是线段AD的中点,试求
MN
OM
的值;
(3)将△DCE绕点C逆时针旋转α(O°<α<90°)后,记为△D1CE1(图乙),若M1是线段BE1的中点,N1是线段AD1的中点,则
MN
OM
=
2
2

查看答案和解析>>

同步练习册答案