【题目】已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t(cm2),y与运动时间t(s)的关系如图2所示.
若AB=6cm,请回答下列问题:
(1)求图1中BC、CD的长及边框所围成图形的面积;
(2)求图2中m、n的值.
【答案】
(1)
解:由图2可知从B→C运动时间为4s,
∴BC=2×4=8cm,
同理CD=2×(6﹣4)=8cm,
∴边框围成图形面积=AF×AB﹣CD×DE=14×6﹣4×6=60cm2
(2)
解:m=S△ABC= ×AB×BC=24,
n=(BC+CD+DE+EF+FA)÷2=17.
【解析】(1)根据路程=速度×时间,即可解决问题.(2)由图象可知m的值就是△ABC面积,n的值就是运动的总时间,由此即可解决.
【考点精析】解答此题的关键在于理解函数的图象的相关知识,掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,与y轴交于点C.
(1)求抛物线的解析式,并写出其对称轴;
(2)把(1)中所求出的抛物线记为C1,将C1向右平移m个单位得到抛物线C2,C1与C2的在第一象限交点为M,过点M作MG⊥x轴于点G,交线段AC于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠o)的图象在第一象限交于点C,如果点B的坐标为(0,2).OA=OB,B是线段AC的中点.
(l)求点A的坐标及一次函数解析式;
(2)求点C的坐标及反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以点M(0,3)为圆心、5为半径的圆与x轴交于点A、B(点A在点B的左侧),与y轴交于点C、D(点C在点D的上方),经过B、C两点的抛物线的顶点E在第二象限.
(1)、求点A、B两点的坐标.
(2)、当抛物线的对称轴与⊙M相切时, 求此时抛物线的解析式.
(3)、连结AE、AC、CE,若.①求点E坐标;②在直线BC上是否存在点P,使得以点B、M、
P为顶点的三角形和△ACE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的布袋里装有4个标号为1、2、-3、-4.的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).
(1)小凯从布袋里随机取出一个小球,记下数字为x,求x为负数的概率;
(2)请你运用画树状图或列表的方法,写出点P所有可能的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方程-x2+3x=1用公式法求解,先确定a , b , c的值,正确的是( )
A.a=-1,b=3,c=-1
B.a=-1,b=3,c=1
C.a=-1,b=-3,c=-1
D.a=1,b=-3,c=-1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com