精英家教网 > 初中数学 > 题目详情
在直角三角形中,若斜边上的中线垂直斜边,则它的两个锐角度数是__________,若此三角形斜边长为8,则斜边上的高等于__________

 

答案:
解析:

45°,  4

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且精英家教网点A(0,2),点C(1,0),如图所示,抛物线y=ax2-ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,现将一块腰长为
5
的等腰直角三角板ABC放在第三象限,斜靠在两坐标轴上,且点A(0,-2),直角顶点C在x轴的负半轴上(如图所示),抛物线y=ax2+ax+2经过点B.
(1)点C的坐标为
(-1,0)
(-1,0)
,点B的坐标为
(-3,-1)
(-3,-1)

(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,现将一张等腰直角三角形纸片ABC放在第二象限,斜靠在精英家教网两坐标轴上,点B的坐标为(-3,1),且抛物线y=ax2+ax-4a经过点B.
(Ⅰ)求抛物线的解析式;
(Ⅱ)求点A和点C的坐标;
(Ⅲ)以AC所在直线为对称轴,将△ABC折叠,问点B的对称点B1是否落在抛物线上?再以AC的中点为对称中心,将△ABC作中心对称变换,这时点B的对称点B2是否落在抛物线上?若在,求出它们的坐标;若不在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,将一张直角三角形纸片ABC折叠,使A与C重合,这时DE为折底,△CBE为等腰三角形,再将纸片沿△CBE的对称轴EF折叠,这时得到一个折叠而成的无缝隙、无重叠的矩形,这个矩形称为“折得矩形”.精英家教网
(1)如图②,正方形网格中的△ABC能折成“折得矩形”吗?,若能,请在图②中画出折痕;
(2)如图③,正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且由△ABC折成的“折得矩形”为正方形;
(3)如果一个三角形折成的“折得矩形”为正方形,那么它必须满足的条件是
 

(4)若一个四边形能折成“折得矩形”,那么它必须满足的条件是
 

查看答案和解析>>

同步练习册答案