精英家教网 > 初中数学 > 题目详情
16、如图,已知点O为△ABC内角平分线的交点,过点O作MN∥BC,分别交AB于AC点M、N,若AB=12,
AC=14,则△AMN的周长是
26
分析:根据角平分线性质和平行线的性质推出∠MOB=∠MBO,推出BM=OM,同理CN=ON,代入三角形周长公式求出即可.
解答:解:∵BO平分∠ABC,
∴∠MBO=∠CBO,
∵MN∥BC,
∴∠MOB=∠CBO,
∴∠MOB=∠MBO,
∴OM=BM,
同理CN=NO,
∴BM+CN=MN,
∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=12+14=26.
故答案为:26.
点评:本题主要考查对等腰三角形的性质和判定,平行线的性质,角平分线性质等知识点的理解和掌握,能求出BM=OM、CN=ON是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知点C为线段AE上一点,AE=8cm,△ABC和△CDE为AE同侧的两个等边三角形,连接BE交CD于N,连接AD交BC于M,连接MN.
(1)求证:AD=BE;
(2)求证:MN∥AE;
(3)若点C在AE上运动(点C不与A、E重合),当点C运动到什么位置时,线段MN的长度最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•龙湖区模拟)如图,已知点P为反比例函数y=
4x
的图象上的一点,过点P作横轴的垂线,垂足为M,则△OPM的面积为
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•玉林)如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.
(1)求证:AE平分∠CAB;
(2)探求图中∠1与∠C的数量关系,并求当AE=EC时tanC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点D为△ABC中AC边上一点,且AD:DC=3;4,设
BA
=
a
BC
b

(1)在图中画出向量
BD
分别在
a
b
方向上的分向量;
(2)试用
a
b
的线性组合表示向量
BD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点D为等腰直角△ABC内一点,AC=BC,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.若DE=acm,BD=bcm(a>b),则CD=
a-b
a-b
cm.

查看答案和解析>>

同步练习册答案