【题目】等边△ABC中,AO是BC边上的高,D为AO上一点,以CD为一边,在CD下方作等边△CDE,连接BE.
(1)求证:△ACD≌△BCE
(2)过点C作CH⊥BE,交BE的延长线于H,若BC=8,求CH的长.
【答案】
(1)解:∵△ABC和△CDE都是等边三角形,
∴CA=CB,CD=CE,∠ACB=600 , ∠DCE=600;
∴∠ACD+∠BCD=∠ACB=600 ,
∠BCE+∠BCD=∠DCE=600 ,
∴∠ACD=∠BCE
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS) 。
(2)解:∵△ABC是等边三角形,AO是BC边上的高
∴∠BAC=600 , 且AO平分∠BAC;
∴∠CAD= = =300;
∵△ACD≌△BCE
∴∠CAD=∠CBE
∴∠CBE=300
又∵CH⊥BE,BC=8
∴在Rt△BCH中,CH= = =4
即CH=4
【解析】(1)根据等边三角形的性质得出CA=CB,CD=CE,∠ACB=600 , ∠DCE=600;根据角的和差得出∠ACD=∠BCE ,进而利用SAS判断出△ACD≌△BCE ;
(2)根据等边三角形的性质及三线合一得出∠BAC=600 , 且AO平分∠BAC;即∠CAD= ∠ B A C = × 60 ° =300; 根据全等三角形对应角相等得出∠CAD=∠CBE=30° ,然后根据含30°角的直角三角形的边之间的关系得出CH= B C = × 8 =4 。
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对含30度角的直角三角形的理解,了解在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
科目:初中数学 来源: 题型:
【题目】下列命题中正确的有( )
①相等的角是对顶角; ②在同一平面内,若a∥b,b∥c,则a∥c;
③同旁内角互补; ④互为邻补角的两角的角平分线互相垂直.
A.4个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在□ABCD中,已知AB、BC、CD三条边长度分别为(x + 3)cm、(x - 4)cm、16 cm,则AD = ____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.
(1)求证:△COD是等边三角形.
(2)当α=150°时,试判断△AOD的形状.
(3)探究:当α为多少度时,△AOD是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列长度的三条线段,能组成三角形的是( )
A.2cm,3cm,4cmB.1cm,4cm,2cm
C.1cm,2cm,3cmD.6cm,2cm,3cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com