19£®¼ÆË㣺
£¨1£©£¨-$\frac{{a}^{2}b}{c}$£©2•£¨-c2£©2¡Â£¨$\frac{bc}{a}$£©4     
£¨2£©$\frac{2a}{{a}^{2}-4}$+$\frac{1}{2-a}$     
£¨3£©£¨1+$\frac{3}{a-2}$£©¡Â$\frac{a+1}{{a}^{2}-4}$
£¨4£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨$\frac{x+1}{x-1}$+$\frac{1}{{x}^{2}-2x+1}$£©¡Â$\frac{x}{x-1}$£¬ÆäÖÐx=$\sqrt{2}$+1£®

·ÖÎö £¨1£©°´ÕÕÏȳ˷½£¬Ôٳ˳ýµÄ˳ÐòÖ±½Ó½øÐмÆË㣻
£¨2£©Òì·Öĸ·ÖʽÏà¼Ó¼õ£¬ÏÈͨ·Ö£¬»¯ÎªÍ¬·ÖĸµÄ·Öʽ£¬È»ºóÔÙ°´Í¬·Öĸ·ÖʽµÄ¼Ó¼õ·¨·¨Ôò½øÐмÆË㣮
£¨3£©Ö±½ÓÔËÓÃÕûʽµÄ³ý·¨·¨Ôò½øÐмÆË㣻
£¨4£©¸ù¾Ý·ÖʽµÄÔËËã·¨Ôò½øÐл¯¼ò£¬È»ºó°ÑxµÄÖµ´úÈë¼ÆË㣮

½â´ð ½â£º£¨1£©Ô­Ê½=$\frac{{a}^{4}{b}^{2}}{{c}^{2}}$•c4•$\frac{{a}^{4}}{{b}^{4}{c}^{4}}$
=$\frac{{a}^{8}}{{b}^{2}{c}^{2}}$£»
£¨2£©Ô­Ê½=$\frac{2a}{£¨a+2£©£¨a-2£©}$-$\frac{a+2}{£¨a+2£©£¨a-2£©}$
=$\frac{1}{a+2}$£»
£¨3£©Ô­Ê½=$\frac{a+1}{a-2}$•$\frac{£¨a+2£©£¨a-2£©}{a+1}$
=a+2£»
£¨4£©£¨$\frac{x+1}{x-1}$+$\frac{1}{{x}^{2}-2x+1}$£©¡Â$\frac{x}{x-1}$
=$\frac{x}{£¨x-1£©^{2}}$•$\frac{x-1}{x}$
=$\frac{1}{x-1}$£¬
µ±x=$\sqrt{2}$+1ʱ£¬Ô­Ê½=$\frac{1}{\sqrt{2}+1-1}$=$\frac{\sqrt{2}}{2}$£®

µãÆÀ ´ËÌ⿼²éÁ˶àÏîʽµÄ³Ë·¨£¬»ýµÄ³Ë·½µÄÐÔÖÊ£¬µ¥ÏîʽµÄ³Ë·¨£¬¶àÏîʽµÄ³ý·¨£¬·ÖʽµÄ¼Ó¼õ·¨ÒÔ¼°»ìºÏÔËË㣬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÅ×ÎïÏßy=2x2£¬ÄÜ·ñͨ¹ýÉÏ¡¢ÏÂƽÒÆÅ×ÎïÏߣ¬Ê¹Ö®¹ýµã£¨2£¬4£©£¿Èç¹ûÄÜ£¬Ëµ³öƽÒƵķ½ÏòºÍ¾àÀ룻Èç¹û²»ÄÜ£¬ÊÔ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑ֪ƽÃæÖ±½Ç×ø±êϵÄÚÈýµãA£¨3£¬0£©¡¢B£¨5£¬0£©¡¢C£¨0£¬3£©£®¡ÑP¾­¹ýµãA¡¢B¡¢C£¬ÔòµãPµÄ×ø±êΪ£¨4£¬4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÒÑÖªÖ±½ÇÌÝÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏB=90¡ã£¬AB=8cm£¬AD=24cm£¬BC=26cm£¬ABΪ¡ÑOµÄÖ±¾¶£¬¶¯µãP´ÓµãA¿ªÊ¼ÑØAD±ßÏòµãDÒÔ1cm/sµÄËÙ¶ÈÔ˶¯£¬¶¯µãQ´ÓµãC¿ªÊ¼ÑØCB±ßÏòµãBÒÔ3cm/sËÙ¶ÈÔ˶¯£®P¡¢Q·Ö±ð´ÓµãA¡¢Cͬʱ³ö·¢£¬µ±ÆäÖÐÒ»µãµ½´ïÖÕµãʱ£¬ÁíÒ»µãÒ²Ëæֹ֮ͣÔ˶¯£¬ÉèÔ˶¯Ê±¼äΪt s£¬ÎÊ£º
£¨1£©tΪºÎֵʱ£¬P¡¢QÁ½µãÖ®¼äµÄ¾àÀëΪ10cm£¿
£¨2£©t·Ö±ðΪºÎֵʱ£¬Ö±ÏßPQÓë¡ÑOÏàÇУ¿ÏàÀ룿Ïཻ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚÕý·½ÐÎABCDÖУ¬µãPÊǶԽÇÏßACÉÏÒ»µã£¬°Ñ¡÷BPCÈÆ×ŵãBÄæʱÕëÐýתµÃµ½¡÷BQA£®
£¨1£©ÈôAC=2$\sqrt{2}$£¬ÇóËıßÐÎAPBQµÄÃæ»ý£»
£¨2£©ÈôPC±ÈAP¶à2£¬ÇÒ¡÷PBQµÄÃæ»ýΪ5£¬ÇóÕý·½ÐÎABCDµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¼ÆË㣺¢Ù£¨-$\sqrt{3}$£©2=3£»  ¢Ú£¨-2$\sqrt{5}$£©2=20£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªa£¾b£¬ÔòÏÂÁв»µÈʽÖгÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®-a£¾-bB£®4a£¼4bC£®2a-1£¾3b-1D£®a+3£¾b+3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚÊýÖáÉÏÓÐÈý¸öµãA¡¢B¡¢C£¬Çë»Ø´ðÎÊÌ⣺

£¨1£©½«AµãÏòÓÒÒƶ¯6¸öµ¥Î»£¬ÕâʱµÄµã±íʾµÄÊýÊÇ3£®
£¨2£©ÔõÑùÒƶ¯A¡¢B¡¢CÖеÄÁ½¸öµã£¬²ÅÄÜʹÈý¸öµã±íʾÏàͬµÄÊý£¿Çëд³öÁ½ÖÖÒƶ¯µÄ·½·¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁм¸ºÎÌåÖУ¬½ØÃæ²»¿ÉÄÜΪÈý½ÇÐεÄÊÇ£¨¡¡¡¡£©
A£®Ô²×¶B£®³¤·½ÌåC£®ÇòD£®ÎåÀâÖù

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸