精英家教网 > 初中数学 > 题目详情
如图,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A,B两点,该抛物线的对称轴x=-1,与x轴交于点C,且∠ABC=90°
求:
(1)直线AB的解析式;
(2)抛物线的解析式.
(1)由y=kx-4k,得A(4,0),B(0,-4k)(k<0)
由已知,可得在Rt△ABC中,BO⊥AC
CO=1,OA=4,OB=|-4k|=-4k
∴Rt△BOCRt△AOB
∴BO:OA=CO:BO,
∴BO2=CO•OA
∴16k2=1•4,即k2=
1
4

k=-
1
2
(k<0)

y=-
1
2
x+2


(2)由k=-
1
2
,得A(4,0),B(0,2)
设抛物线为y=a(x+1)2+m.
0=a(4+1)2+m
2=a(0+1)2+m
,解得
a=-
1
12
m=2
1
12

y=-
1
12
(x+1)2+
25
12
,即y=-
1
12
x2-
1
6
x+2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

已知:二次函数y=x2-4x-a,下列说法中错误的个数是(  )
①若图象与x轴有交点,则a≤4
②若该抛物线的顶点在直线y=2x上,则a的值为-8
③当a=3时,不等式x2-4x+a>0的解集是1<x<3
④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-1
⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2-2x+3与x轴相交于点A和点B,与y轴交于点C.
(1)求点A,点B和点C的坐标;
(2)求直线AC的解析式;
(3)设点M是第二象限内抛物线上的一点,且S△MAB=6,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果抛物线y=x2-2(m+1)x+m2与x轴有交点,则m的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若关于x的方程ax2+bx+c=0(a≠0)的两个根分别为x1=1,x2=2,则抛物线y=ax2+bx+c与x轴的交点坐标分别为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象如图所示,则下列关系式中成立的是(  )
A.0<-
b
2a
<1
B.0<-
b
2a
<2
C.1<-
b
2a
<2
D.-
b
2a
=1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线C1:y=x2-(2m+4)x+m2-10的顶点A到y轴的距离为3,与x轴交于C、D两点.
(1)求顶点A的坐标;(2)求C、D两点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=x2-2x+0.5如图所示,利用图象可得方程x2-2x+0.5=0的近似解为______(精确到0.1).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某校抽查了50名九年级学生对艾滋病三种主要传播途径的知晓情况,结果如下表:
传播途径(种)
0
1
2
3
知晓人数(人)
3
7
15
25
估计该校九年级550学生中,三种传播途径都知道的有(   )人.
A.275        B.25       C.50        D.300

查看答案和解析>>

同步练习册答案