精英家教网 > 初中数学 > 题目详情
14.如图,∠MON=90°,点A,B分别在直线OM、ON上,BC是∠ABN的平分线.
(1)如图1,若BC所在直线交∠OAB的平分线于点D时,尝试完成①、②两题:
①当∠ABO=30°时,∠ADB=45°;
②当点A、B分别在射线OM、ON上运动时(不与点O重合),试问:随着点A、B的运动,∠ADB的大小会变吗?如果不会,请求出∠ADB的度数;如果会,请求出∠ADB的度数的变化范围;
(2)如图2,若BC所在直线交∠BAM的平分线于点C时,将△ABC沿EF折叠,使点C落在四边形ABEF内点C′的位置,求∠BEC′+∠AFC′的度数.

分析 (1)①根据角平分线的定义得到∠DAB=$\frac{1}{2}$∠OAB=30°,∠ABC=$\frac{1}{2}$∠ABN=75°,根据三角形的外角的性质计算即可;
②仿照①的作法计算即可;
(2)根据三角形内角和定理得到∠CAB+∠CBA=135°,根据翻转变换的性质、三角形内角和定理计算即可.

解答 解:(1)①∵∠ABO=30°,
∴∠OAB=60°,∠ABN=150°,
∵BC是∠ABN的平分线,AD是∠OAB的平分线,
∴∠DAB=$\frac{1}{2}$∠OAB=30°,∠ABC=$\frac{1}{2}$∠ABN=75°,
∴∠ADB=∠ABC-∠DAB=45°,
故答案为:45;
②设∠ABO=α,
∵∠MON=90°,
∴∠BAD=45°-$\frac{α}{2}$,∠ABC=90°-$\frac{α}{2}$,
∴∠ABD=180°-∠ABC=90°+$\frac{α}{2}$,
∴∠ADB=180°-∠BAD-∠ABD=45°;

(2)∵∠MON=90°,
∴∠ABO+∠BAO=90°,
∴∠CAB+∠CBA=$\frac{1}{2}$(∠BAM+∠ABN)=135°,
∴∠C=45°,
∴∠CEC′+∠CFC′=2(180°-∠C)=270°,
∴∠BEC′+∠AFC′=360°-(∠CEC′+∠CFC′)=90°.

点评 本题考查的是角平分线的定义、三角形内角和定理、三角形的外角的性质,掌握三角形内角和等于180°、翻转变换的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE
求证:(1)AE=CF;
(2)AE∥CF
(3)∠AFE=∠CEF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,四边形ABCD中,AC=BD,∠1=∠2.求证:AB=CD.
小明经过思考,准备用平移的方法来解决这个问题,他过A作BD的平行线,过D作AB的平行线,二者交于点E,连接CE,如图2所示.
(1)请你使用小明的方法解决这个问题;
(2)请你借鉴小明的思路解决下面的问题:
如图3,△ABC中,AD是∠BAC的平分线,P为AD上一点,连接BP并延长交AC于E,连接CP并延长交AB于F,若BE=CF,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.问题探索:在坐标平面内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).
(1)分别求出线段AB中点,线段AC中点及线段CD中点的坐标,则线段AB中点的坐标与点A,B的坐标之间有什么关系?对线段AC中点和点A,C及线段CD中点和点C,D成立吗?
(2)已知点M(a,0),N(b,0),请写出线段MN的中点P的坐标($\frac{a+b}{2}$,0).
结论猜想:
(3)若M(x1,y1),N(x2,y2),则MN的中点P的坐标为($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$).
拓展应用:
(4)若在平面直角坐标系中的点M,点N的坐标分别为M(2,y),N(x,-2),且P为MN的中点,若将线段MN向右平移3个单位后,与点P对应的点为Q,则点Q的坐标为(6,4),则x=4,y=10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:
(1)a-b+$\frac{2{b}^{2}}{a+b}$;
(2)$\frac{{a}^{2}-a}{{a}^{2}+1+2a}$÷$\frac{a-1}{a+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:
(1)计算:$4×{({-\frac{1}{36}})^0}-\sqrt{25}+{({\frac{1}{3}})^{-2}}$
(2)化简:(4ab3-8a2b2)÷(4ab)+2a(a-b)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.为了了解我县八年级期中考试数学成绩情况,在期中考试后将随机抽取500名学生的数学成绩进行统计分析,以下说法正确的是(  )
A.我县参加期中考试的所有八年级学生是总体
B.每位学生的数学成绩是个体
C.抽取的500名学生是样本容量
D.被抽取的500名学生是总体的一个样本

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)问题发现
如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;
①∠CDB的度数为60°;
②线段AE,CD之间的数量关系为AE=CD.
(2)拓展探究
如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.
①求∠CDB的大小;
②请判断线段BF,AD,CD之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,AC=2$\sqrt{2}$,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.因式分解:
(1)x2-y2
(2)-4a2b+4ab2-b3

查看答案和解析>>

同步练习册答案