精英家教网 > 初中数学 > 题目详情
已知函数y1=ax2+bx+c(a≠0)和y2=mx+n的图象交于(-2,-5)点和(1,4)点,并且y1=ax2+bx+c的图象与y轴交于点(0,3).
(1)求函数y1和y2的解析式,并画出函数示意图;
(2)x为何值时,①y1>y2;②y1=y2;③y1<y2
(1)把(-2,-5)、(1,4)、(0,3)代入y1=ax2+bx+c(a≠0)得
4a-2b+c=-5
a+b+c=4
c=3

解得
a=-1
b=2
c=3

所以y1=-x2+2x+3,
把(-2,-5)、(1,4)代入y2=mx+n得
-2m+n=-5
m+n=4

解得
m=3
n=1

所以y2=3x+1;如图

(2)①当-2<x<1时,y1>y2
②当x=-2或x=1时,y1=y2
③当x<-2或x>1时y1<y2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知:抛物线y=ax2+bx-4(a≠0)与x轴交于A、B两点,与y轴交于点C,A、B两点的坐标分别为A(-6,0)、B(2,0).
(1)求这条抛物线的函数表达式;
(2)已知在抛物线的对称轴上存在一点P,使得PB+PC的值最小,请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DEPC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在学校田径运动会上,九年级的一名高个子男生抛实心球,已知实心球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男生的抛球处A点坐标为(0,2),实心球在空中线路的最高点B点的坐标是(6,5).
(1)求这个二次函数解析式;
(2)若抛出13.5米或大于13.5米远为“好成绩”,问该男生在这次抛掷中,能取得“好成绩”吗?试通过计算说明.(
15
≈3.873)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示的直角坐标系中,若△ABC是等腰直角三角形,AB=AC=8
2
,D为斜边BC的中点.点P由点A出发沿线段AB作匀速运动,P′是P关于AD的对称点;点Q由点D出发沿射线DC方向作匀速运动,且满足四边形QDPP′是平行四边形.设平行四边形QDPP′的面积为y,DQ=x.
(1)求出y关于x的函数解析式;
(2)求当y取最大值时,过点P,A,P′的二次函数解析式;
(3)能否在(2)中所求的二次函数图象上找一点E使△EPP′的面积为20?若存在,求出E点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y1=a(x+2)2-3y2=
1
2
(x-3)2+1
交于点A(1,3)过点A作x轴的平行线,分别交两条抛物线于点B、C,则以下结论:
①无论x取何值,y2的值总是正数;②a=
2
3
;③当x=0时,y2-y1=4;④2AB=3AC;
其中,结论正确的是______(填写序号即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度.他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直地接触地面和门的内壁,并测得AC=1m.小强画出了如图的草图,请你帮他算一算门的高度OE(精确到0.1m).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市有一种可食用的野生菌,上市时,某经销公司按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格y(元)与存放天数x(天)之间的部分对应值如下表所示:
存放天数x(天)246810
市场价格y(元)3234363840
但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存110天,同时,平均每天有3千克的野生菌损坏不能出售.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y与x的变化规律,并直接写出y与x之间的函数关系式;若存放x天后,将这批野生茵一次性出售,设这批野生菌的销售总额为P元,试求出P与x之间的函数关系式;
(2)该公司将这批野生菌存放多少天后出售可获得最大利润w元并求出最大利润.(利润=销售总额-收购成本-各种费用)
(3)该公司以最大利润将这批野生菌一次性出售的当天,再次按市场价格收购这种野生1180千克,存放入冷库中一段时间后一次性出售,其它条件不变,若要使两次的总盈利不低于4.5万元,请你确定此时市场的最低价格应为多少元?(结果精确到个位,参考数据:
14
≈3.742,
1.4
≈1.183

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示.
(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;
(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx经过B(8、0),C(6、2
3
)两点,点A是点C关于抛物线y=ax2+bx的对称轴的对称点,连接OA、AC、BC

(1)求抛物线的解析式.
(2)动点E从点O出发,速度为3个单位/秒,沿O→A→C匀速运动:动点F从点O出发,速度为4个单位/秒,沿O→B匀速运动,动点E、F同时出发,若设运动时间为t秒(0≤t≤2),△OEF的面积为S,请求出运动过程中S与t的关系式.
(3)设P是抛物线对称轴上的一点,是否存在点P使以O、E、F、P为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,直接写出点P的坐标.

查看答案和解析>>

同步练习册答案