在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连结PB.PQ,则△PBQ周长的最小值为___cm(结果不取近似值).
+1
【解析】由题,连接PD,由正方形的对称性知PD=PB,所以△PBQ周长=BQ+PB+PQ=PD+PQ+BQ,当点PDQ共线时, △PBQ周长最短,连接DQ与AC相交于点P,因为BC=2cm, 点Q为BC边的中点,所以CQ=1,在Rt△DCQ中,CD=2,CQ=1,由勾股定理知DQ=cm,所以△PBQ周长的最小值为(+1)cm.
试题分析:求两条线段和的最小值,一般是利用对称性将两条线段化成一条折线段,当折线段变成直线段时,此时两条线段的和最短,由题,连接PD,由正方形的对称性知PD=PB,所以△PBQ周长=BQ+PB+PQ=PD+PQ+
BQ,当点PDQ共线时, △PBQ周长最短,连接DQ与AC相交于点P,因为BC=2cm, 点Q为BC边的中点,所以CQ=1,在Rt△DCQ中,CD=2,CQ=1,由勾股定理知DQ=cm,所以△PBQ周长的最小值为(+1)cm.
考点:两条线段和的最小值.
科目:初中数学 来源: 题型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com