精英家教网 > 初中数学 > 题目详情
如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点E为线段AB上任意一点(E不与B重合),以CE为斜边作等腰Rt△CDE,连接AD,下列结论:
①∠BCE=∠ACD;②∠BCE=∠AED;③BE=AD;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为
3
2

其中正确的结论有(  )个.
分析:首先根据已知条件利用等腰直角三角形的性质以及相似三角形的判定与性质分别进行判断各结论是否正确.
解答:解:∵△ABC、△DCE都是等腰Rt△,
∴AB=AC=
2
2
BC=
2
,CD=DE=
2
2
CE;
∠B=∠ACB=∠DEC=∠DCE=45°;
①∵∠ACB=∠DCE=45°,
∴∠ACB-∠ACE=∠DCE-∠ACE;
即∠ECB=∠DCA;故①正确;

②∵∠AED+∠DEC+∠BEC=180°,∠DEC=45°,
∴∠AED+∠BEC=135°,
又∵∠BCE+∠BEC=180°-∠B=180°-45°=135°,
∴∠AED=∠BCE,故此选项正确;

③∵
CD
EC
=
AC
BC
=
2
2

CD
AC
=
CE
BC

由①知∠ECB=∠DCA,
∴△BEC∽△ADC;
AD
BE
=
2
2

∴BE≠AD,故此选项错误;

④∵△BEC∽△ADC;
∴∠DAC=∠B=45°;
∴∠DAC=∠BCA=45°,
即AD∥BC,故④正确;

⑤△ABC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;
△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;
由④的△BEC∽△ADC知:当AD最长时,BE也最长;
故梯形ABCD面积最大时,E、A重合,此时EC=AC=
2
,AD=1;
故S梯形ABCD=
1
2
(1+2)×1=
3
2
,故⑤正确;
因此本题正确的结论是①②④⑤共4个,
故选:D.
点评:此题主要考查了等腰直角三角形的性质、平行线的判定、相似三角形的判定和性质、图形面积的求法等知识,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是(  )
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边精英家教网上运动,且保持AD=CE.连接DE、DF、EF.
①求证:△DFE是等腰直角三角形;
②在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由.
③求△CDE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,则
ADDC
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠ACB=90°,CA=CB,点M、N是AB上任意两点,且∠MCN=45°,点T为AB的中点.以下结论:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正确结论的序号是(  )
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.
(1)在此运动变化的过程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面积.

查看答案和解析>>

同步练习册答案